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Abstract
Atomic Commit Problem (ACP) is a single-shot agreement problem similar to consensus, meant
to model the properties of transaction commit protocols in fault-prone distributed systems. We
argue that ACP is too restrictive to capture the complexities of modern transactional data stores,
where commit protocols are integrated with concurrency control, and their executions for differ-
ent transactions are interdependent. As an alternative, we introduce Transaction Certification
Service (TCS), a new formal problem that captures safety guarantees of multi-shot transaction
commit protocols with integrated concurrency control. TCS is parameterized by a certification
function that can be instantiated to support common isolation levels, such as serializability and
snapshot isolation. We then derive a provably correct crash-resilient protocol for implement-
ing TCS through successive refinement. Our protocol achieves a better time complexity than
mainstream approaches that layer two-phase commit on top of Paxos-style replication.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Atomic commit problem, two-phase commit, Paxos

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.14

1 Introduction

Modern data stores are often required to manage massive amounts of data while providing
stringent transactional guarantees to their users. They achieve scalability by partitioning
data into independently managed shards (aka partitions) and fault-tolerance by replicating
each shard across a set of servers [9, 14, 34, 42]. Implementing such systems requires soph-
isticated protocols to ensure that distributed transactions satisfy a conjunction of desirable
properties commonly known as ACID: Atomicity, Consistency, Isolation and Durability.

Traditionally, distributed computing literature abstracts ways of achieving these proper-
ties into separate problems: in particular, atomic commit problem (ACP) for Atomicity and
concurrency control (CC) for Isolation. ACP is formalised as a one-shot agreement prob-
lem in which multiple shards involved in a transaction need to reach a decision on its final
outcome: commit if all shards voted to commit the transaction, and abort otherwise [13].
Concurrency control is responsible for determining whether a shard should vote to commit
or abort a transaction based on the locally observed conflicts with other active transactions.
Although both ACP and CC must be solved in any realistic transaction processing system,
they are traditionally viewed as disjoint in the existing literature. In particular, solutions
for ACP treat the votes as the inputs of the problem, and leave the interaction with CC,
which is responsible for generating the votes, outside the problem scope [2, 16, 23, 38].

1 Alexey Gotsman was supported by an ERC Starting Grant RACCOON.

© Gregory Chockler and Alexey Gotsman;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 Multi-Shot Distributed Transaction Commit

This separation, however, is too simplistic to capture the complexities of many prac-
tical implementations in which commit protocols and concurrency control are tightly in-
tegrated, and as a result, may influence each other in subtle ways. For example, consider
the classical two-phase commit (2PC) protocol [15] for solving ACP among reliable pro-
cesses. A transaction processing system typically executes a 2PC instance for each transac-
tion [31, 32, 34, 39]. When a processes pi managing a shard s receives a transaction t, it
performs a local concurrency-control check and accordingly votes to commit or abort t. The
votes on t by different processes are aggregated, and the final decision is then distributed
to all processes. If pi votes to commit t, as long as it does not know the final decision on t,
it will have to conservatively presume t as committed. This may cause pi to vote abort in
another 2PC instance for a transaction t′ conflicting with t, even if in the end t is aborted. In
this case, the outcome of one 2PC instance (for t′) depends on the internals of the execution
of another instance (for t) and the concurrency-control policy used.

At present, the lack of a formal framework capturing such intricate aspects of real imple-
mentations makes them difficult to understand and prove correct. In this paper, we take the
first step towards bridging this gap. We introduce Transaction Certification Service (TCS,
§2), a new formal problem capturing the safety guarantees of a multi-shot transaction com-
mit protocol with integrated concurrency control. The TCS exposes a simple interface
allowing clients to submit transactions for certification via a certify request, which returns
commit or abort. A TCS is meant to be used in the context of transactional processing
systems with optimistic concurrency control, where transactions are first executed optim-
istically, and the results (e.g., read and write sets) are submitted for certification to the
TCS. In contrast to ACP, TCS does not impose any restrictions on the number of repeated
certify invocations or their concurrency. It therefore lends itself naturally to formalising
the interactions between transaction commit and concurrency control. To this end, TCS is
parameterised by a certification function, which encapsulates the concurrency-control policy
for the desired isolation level, such as serializability and snapshot isolation [1]. The cor-
rectness of TCS is then formulated by requiring that its certification decisions be consistent
with the certification function.

We leverage TCS to develop a formal framework for constructing provably correct multi-
shot transaction commit protocols with customisable isolation levels. The core ingredient
of our framework is a new multi-shot two-phase commit protocol (§3). It formalises how the
classical 2PC interacts with concurrency control in many practical transaction processing
systems [31, 32, 34, 39] in a way that is parametric in the isolation level provided. The
protocol also serves as a template for deriving more complex TCS implementations. We
prove that the multi-shot 2PC protocol correctly implements a TCS with a given certification
function, provided the concurrency-control policies used by each shard match this function.

We next propose a crash fault-tolerant TCS implementation and establish its correctness
by proving that it simulates multi-shot 2PC (§4). A common approach to making 2PC
fault-tolerant is to get every shard to simulate a reliable 2PC process using a replication
protocol, such as Paxos [9, 14, 16, 18, 42]. Similarly to recent work [26, 41], our implement-
ation optimises the time complexity of this scheme by weaving 2PC and Paxos together. In
contrast to previous work, our protocol is both generic in the isolation level and rigorously
proven correct. It can therefore serve as a reference solution for future distributed transac-
tion commit implementations. Moreover, a variant of our protocol has a time complexity
matching the lower bounds for consensus [6, 24] and non-blocking atomic commit [13].

The main idea for achieving such a low time complexity is to eliminate the Paxos con-
sensus required in the vanilla fault-tolerant 2PC to persist the final decision on a transaction
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at a shard. Instead, the decision is propagated to the relevant shard replicas asynchronously.
This means that different shard replicas may receive the final decision on a transaction at
different times, and thus their states may be inconsistent. To deal with this, in our protocol
the votes are computed locally by a single shard leader based on the information available
to it; other processes merely store the votes. Similarly to [22, 29], such a passive replication
approach requires a careful design of recovery from leader failures. Another reduction in
time complexity comes from the fact that our protocol avoids consistently replicating the
2PC coordinator: we allow any process to take over as a coordinator by accessing the current
state of the computation at shards. The protocol ensures that all coordinators will reach
the same decision on a transaction.

2 Transaction Certification Service

Interface. A Transaction Certification Service (TCS) accepts transactions from T and
produces decisions from D = {abort,commit}. Clients interact with the TCS using two
types of actions: certification requests of the form certify(t), where t ∈ T , and responses
of the form decide(t, d), where d ∈ D.

In this paper we focus on transactional processing systems using optimistic concurrency
control. Hence, we assume that a transaction submitted to the TCS includes all the inform-
ation produced by its optimistic execution. As an example, consider a transactional system
managing objects in the set Obj with values in the set Val, where transactions can execute
reads and writes on the objects. The objects are associated with a totally ordered set Ver
of versions with a distinguished minimum version v0. Then each transaction t submitted to
the TCS may be associated with the following data:

Read set R(t) ⊆ 2Obj×Ver: the set of objects with their versions that t read, which contains
at most one version per object.
Write set of W (t) ⊆ 2Obj×Val: the set of objects with their values that t wrote, which
contains at most one value per object. We require that any object written has also been
read: ∀(x,_) ∈W (t). (x,_) ∈ R(t).
Commit version Vc(t) ∈ Ver: the version to be assigned to the writes of t. We require
that this version be higher than any of the versions read: ∀(_, v) ∈ R(t). Vc(t) > v.

Certification functions. A TCS is specified using a certification function f : 2T × T →
D, which encapsulates the concurrency-control policy for the desired isolation level. The
result f(T, t) is the decision for the transaction t given the set of the previously committed
transactions T . We require f to be distributive in the following sense:

∀T1, T2, t. f(T1 ∪ T2, t) = f(T1, t) u f(T2, t), (1)

where the u operator is defined as follows: commitu commit = commit and duabort =
abort for any d. This requirement is justified by the fact that common definitions of f(T, t)
check t for conflicts against each transaction in T separately.

For example, given the above domain of transactions, the following certification func-
tion encapsulates the classical concurrency-control policy for serializability [40]: f(T, t) =
commit iff none of the versions read by t have been overwritten by a transaction in T , i.e.,

∀x, v. (x, v) ∈ R(t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v). (2)

A certification function for snapshot isolation (SI) [1] is similar, but restricts the certification
check to the objects the transaction t writes: f(T, t) = commit iff

∀x, v. (x, v) ∈ R(t) ∧ (x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v). (3)
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It is easy to check that the certification functions (2) and (3) are distributive.

Histories. We represent TCS executions using histories—sequences of certify and decide
actions such that every transaction appears at most once as a parameter to certify, and
each decide action is a response to exactly one preceding certify action. For a history h we
let act(h) be the set of actions in h. For actions a, a′ ∈ act(h), we write a ≺h a

′ when a occurs
before a′ in h. A history h is complete if every certify action in it has a matching decide
action. A complete history is sequential if it consists of pairs of certify and matching
decide actions. A transaction t commits in a history h if h contains decide(t,commit).
We denote by committed(h) the projection of h to actions corresponding to the transactions
that are committed in h. For a complete history h, a linearization ` of h [21] is a sequential
history such that: (i) h and ` contain the same actions; and (ii)

∀t, t′. decide(t,_) ≺h certify(t′) =⇒ decide(t,_) ≺` certify(t′).

TCS correctness. A complete sequential history h is legal with respect to a certification
function f , if its certification decisions are computed according to f :

∀a = decide(t, d) ∈ act(h). d = f({t′ | decide(t′,commit) ≺h a}, t).

A history h is correct with respect to f if h | committed(h) has a legal linearization. A TCS
implementation is correct with respect to f if so are all its histories.

A correct TCS can be readily used in a transaction processing system. For example,
consider the domain of transactions defined earlier. A typical system based on optimistic
concurrency control will ensure that transactions submitted for certification read versions
that already exist in the database. Formally, it will produce only histories h such that, for a
transaction t submitted for certification in h, if (x, v) ∈ R(t), then there exists a t′ such that
(x, v) ∈ W (t′), and h contains decide(t′,commit) before certify(t). It is easy to check
that, if such a history h is correct with respect to the certification function (2), then it is
also serializable. Hence, TCS correct with respect to certification function (2) can indeed
be used to implement serializability.

3 Multi-Shot 2PC and Shard-Local Certification Functions

We now present a multi-shot version of the classical two-phase commit (2PC) protocol [15],
parametric in the concurrency-control policy used by each shard. We then prove that the
protocol implements a correct transaction certification service parameterised by a given cer-
tification function, provided per-shard concurrency control matches this function. Like 2PC,
our protocol assumes reliable processes. In the next section, we establish the correctness of
a protocol that allows crashes by proving that it simulates the behaviour of multi-shot 2PC.

System model. We consider an asynchronous message-passing system consisting of a set
of processes P. In this section we assume that processes are reliable and are connected by
reliable FIFO channels. We assume a function client : T → P determining the client process
that issued a given transaction. The data managed by the system are partitioned into shards
from a set S. A function shards : T → 2S determines the shards that need to certify a given
transaction, which are usually the shards storing the data the transaction accesses. Each
shard s ∈ S is managed by a process proc(s) ∈ P. For simplicity, we assume that different
processes manage different shards.
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1 next← −1 ∈ Z;
2 txn[ ] ∈ N→ T ;
3 vote[ ] ∈ N→ {commit,abort};
4 dec[ ] ∈ N→ {commit,abort};
5 phase[ ]← (λk. start) ∈ N→ {start,prepared,decided};

6 function certify(t)
7 send PREPARE(t) to proc(shards(t));

8 when received PREPARE(t)
9 next← next + 1;

10 txn[next]← t;
11 vote[next]← fs0({txn[k] | k < next∧phase[k] = decided∧dec[k] = commit}, t) u

gs0({txn[k] | k < next∧phase[k] = prepared∧vote[k] = commit}, t);
12 phase[next]← prepared;
13 send PREPARE_ACK(s0, next, t, vote[next]) to coord(t);

14 when received PREPARE_ACK(s, poss, t, ds) for every s ∈ shards(t)
15 send DECISION(t,

d
s∈shards(t) ds) to client(t);

16 forall s ∈ shards(t) do
17 send DECISION(poss,

d
s∈shards(t) ds) to proc(s)

18 when received DECISION(k, d)
19 dec[k]← d;
20 phase[k]← decided;

21 non-deterministically for some k ∈ N
22 pre: phase[k] = decided;
23 phase[k]← prepared;

24 non-deterministically for some k ∈ N
25 pre: phase[k] 6= start;
26 send PREPARE_ACK(s0, k, txn[t], vote[k]) to coord(t);

Figure 1 Multi-shot 2PC protocol at a process pi managing a shard s0.

Protocol: common case. We give the pseudocode of the protocol in Figure 1 and illustrate
its message flow in Figure 2a. Each handler in Figure 1 is executed atomically.

To certify a transaction t, a client sends it in a PREPARE message to the relevant shards
(line 6)2. A process managing a shard arranges all transactions received into a total certific-
ation order, stored in an array txn; a next variable points to the last filled slot in the array.
Upon receiving a transaction t (line 8), the process stores t in the next free slot of txn. The
process also computes its vote, saying whether to commit or abort the transaction, and
stores it in an array vote. We explain the vote computation in the following; intuitively,
the vote is determined by whether the transaction t conflicts with a previously received

2 In practice, the client only needs to send the data relevant to the corresponding shard. We omit this
optimisation to simplify notation.
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transaction. After the process managing a shard s receives t, we say that t is prepared at
s. The process keeps track of transaction status in an array phase, whose entries initially
store start, and are changed to prepared once the transaction is prepared. Having pre-
pared the transaction t, the process sends a PREPARE_ACK message with its position in the
certification order and the vote to a coordinator of t. This is a process determined using a
function coord : T → P such that ∀t. coord(t) ∈ proc(shards(t)).

The coordinator of a transaction t acts once it receives a PREPARE_ACK message for t from
each of its shards s, which carries the vote ds by s (line 14). The coordinator computes the
final decision on t using the u operator (§2) and sends it in DECISION messages to the client
and to all the relevant shards. When a process receives a decision for a transaction (line 18),
it stores the decision in a dec array, and advances the transaction’s phase to decided.

Vote computation. A process managing a shard s computes votes as a conjunction of two
shard-local certification functions fs : 2T × T → D and gs : 2T × T → D. Unlike the
certification function of §2, the shard-local functions are meant to check for conflicts only
on objects managed by s. They take as their first argument the sets of transactions already
decided to commit at the shard, and respectively, those that are only prepared to commit
(line 11). We require that the above functions be distributive, similarly to (1).

For example, consider the transaction model given in §2 and assume that the set of
objects Obj is partitioned among shards: Obj =

⊎
s∈S Objs. Then the shard-local certification

functions for serializability are defined as follows: fs(T, t) = commit iff

∀x ∈ Objs.∀v. (x, v) ∈ R(t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v), (4)

and gs(T, t) = commit iff

∀x ∈ Objs.∀v. ((x,_) ∈ R(t) =⇒ (∀t′ ∈ T. (x,_) 6∈W (t′))) ∧
((x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) 6∈ R(t′))).

(5)

The function fs certifies a transaction t against previously committed transactions T simil-
arly to the certification function (2), but taking into account only the objects managed by
the shard s. The function gs certifies t against transactions T prepared to commit.

The first conjunct of (5) aborts a transaction t if it read an object written by a transaction
t′ prepared to commit. To motivate this condition, consider the following example. Assume
that a shard managing an object x votes to commit a transaction t′ that read a version v1 of
x and wants to write a version v2 > v1 of x. If the shard now receives another transaction t
that read the version v1 of x, the shard has to abort t: if t′ does commit in the end, allowing
t to commit would violate serializability, since it would have read stale data. On the other
hand, once the shard receives the abort decision on t′, it is free to commit t.

The second conjunct of (5) aborts a transaction t if it writes to an object read by
a transaction t′ prepared to commit. To motivate this, consider the following example,
adapted from [37]. Assume transactions t1 and t2 both read a version v1 of x at shard s1
and a version v2 of y at shard s2; t1 wants to write a version v′2 > v2 of y, and t2 wants to
write a version v2 > v1 of x. Assume further that s1 receives t1 first and votes to commit it,
and s2 receives t2 first and votes to commit it as well. If s1 now receives t2 and s2 receives
t1, the second conjunct of (5) will force them to abort: if the shards let the transactions
commit, the resulting execution would not be serializable, since one of the transactions must
read the value written by the other.

A simple way of implementing (5) is, when preparing a transaction, to acquire read locks
on its read set and write locks on its write set; the transaction is aborted if the locks cannot
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be acquired. The shard-local certification functions are a more abstract way of defining
the behaviour of this and other implementations [31, 32, 34, 37, 39]. They can also be
used to define weaker isolation levels than serializability. As an illustration, we can define
shard-local certification functions for snapshot isolation as follows: fs(T, t) = commit iff

∀x ∈ Objs.∀v. (x, v) ∈ R(t) ∧ (x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v),

and gs(T, t) = commit iff

(x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) 6∈W (t′)).

The function fs restricts the global function (3) to the objects managed by the shard s. Since
snapshot isolation allows reading stale data, the function gs only checks for write conflicts.

For shard-local certification functions to correctly approximate a given global function
f , we require the following relationships. For a set of transactions T ⊆ T , we write T | s to
denote the projection of T on shard s, i.e., {t ∈ T | s ∈ shards(t)}. Then we require that

∀t ∈ T .∀T ⊆ T . f(T, t) = commit ⇐⇒ ∀s ∈ shards(t). fs((T | s), t) = commit. (6)

In addition, for each shard s, the two functions fs and gs are required to be related to each
other as follows:

∀t. s ∈ shards(t) =⇒ (∀T. gs(T, t) = commit =⇒ fs(T, t) = commit); (7)
∀t, t′. s ∈ shards(t)∩ shards(t′) =⇒ (gs({t}, t′) = commit =⇒ fs({t′}, t) = commit). (8)

Property (7) requires the conflict check performed by gs to be no weaker than the one
performed by fs. Property (8) requires a form of commutativity: if t′ is allowed to commit
after a still-pending transaction t, then t would be allowed to commit after t′. The above
shard-local functions for serializability and snapshot isolation satisfy (6)-(8).

Forgetting and recalling decisions. The protocol in Figure 1 has two additional handlers at
lines 21 and 24, executed non-deterministically. As we show in §4, these are required for the
abstract protocol to capture the behaviour of optimised fault-tolerant TCS implementations.
Because of process crashes, such implementations may temporarily lose the information
about some final decisions, and later reconstruct it from the votes at the relevant shards.
In the meantime, the absence of the decisions may affect some vote computations as we
explained above. The handler at line 21 forgets the decision on a transaction (but not
its vote). The handler at line 24 allows processes to resend the votes they know to the
coordinator, which will then resend the final decisions (line 14). This allows a process that
forgot a decision to reconstruct it from the votes stored at the relevant shards.

Correctness. The following theorem shows the correctness of multi-shot 2PC. In particular,
it shows that the shard-local concurrency control given by fs and gs correctly implements
the shard-agnostic concurrency control given by a global certification function f .

I Theorem 1. A transaction certification service implemented using the multi-shot 2PC
protocol in Figure 1 is correct with respect to a certification function f , provided shard-local
certification functions fs and gs satisfy (6)-(8).

We give the proof in [7, §A]. Its main challenge is that, in multi-shot 2PC, certification
orders at different shards may disagree on the order of concurrently certified transactions;
however, a correct TCS has to certify transactions according to a single total order. We use
the commutativity property (8) to show that per-shard certification orders arising in the
protocol can be merged into the desired single total order.
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Figure 2 Message flow diagrams illustrating the behaviour of (a) multi-shot 2PC; (b) multi-shot
2PC with shards replicated using Paxos; (c) optimised protocol weaving together multi-shot 2PC
and Paxos.

4 Fault-Tolerant Commit Protocol

System model. We now weaken the assumptions of the previous section by allowing pro-
cesses to fail by crashing, i.e., permanently stopping execution. We still assume that pro-
cesses are connected by reliable FIFO channels in the following sense: messages are delivered
in the FIFO order, and messages between non-faulty processes are guaranteed to be even-
tually delivered. Each shard s is now managed by a group of 2f + 1 processes, out of which
at most f can fail. We call a set of f + 1 processes in this group a quorum for s. For a
shard s we redefine proc(s) to be the set of processes managing this shard. For simplicity,
we assume that the groups of processes managing different shards are disjoint.

Vanilla protocol. A straightforward way to implement a TCS in the above model is to
use state-machine replication [36] to make a shard simulate a reliable process in multi-shot
2PC; this is usually based on a consensus protocol such as Paxos [27]. In this case, final
decisions on transactions are never forgotten, and hence, the handlers at lines 21 and 24 are
not simulated. Even though this approach is used by several systems [9, 14, 42], multiple
researchers have observed that the resulting protocol requires an unnecessarily high number
of message delays [26, 28, 41]. Namely, every action of multi-shot 2PC in Figure 2a requires
an additional round trip to a quorum of processes in the same shard to persist its effect,
resulting in the message-flow diagram in Figure 2b. Note that the coordinator actions have
to be replicated as well, since multi-shot 2PC will block if the coordinator fails. The resulting
protocol requires 7 message delays for a client to learn a decision on a transaction.

Optimised protocol overview. In Figures 3 and 4 we give a commit protocol that reduces
the number of message delays by weaving together multi-shot 2PC across shards and a
Paxos-like protocol within each shard. We omit details related to message retransmissions
from the code. We illustrate the message flow of the protocol in Figure 2c and summarise
the key invariants used in its proof of correctness in Figure 5.

A process maintains the same variables as in the multi-shot 2PC protocol (Figure 1)
and a few additional ones. Every process in a shard is either the leader of the shard or
a follower. If the leader fails, one of the followers takes over. A status variable records
whether the process is a leader, a follower or is in a special recovering state used
during leader changes. A period of time when a particular process acts as a leader is denoted
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using integer ballots. For a ballot b ≥ 1, the process leader(b) = ((b − 1) mod (2f + 1)) is
the leader of the ballot. At any given time, a process participates in a single ballot, stored
in a variable ballot. During leader changes we also use an additional ballot variable cballot.

Unlike the vanilla protocol illustrated in Figure 2b, our protocol does not perform con-
sensus to persist the contents of a DECISION message in a shard. Instead, the final decision
on a transaction is sent to the members of each relevant shard asynchronously. This means
that different shard members may receive the decision on a transaction at different times.
Since the final decision on a transaction affects vote computations on transactions following
it in the certification order (§3), computing the vote on a later transaction at different shard
members may yield different outcomes. To deal with this, in our protocol only the leader
constructs the certification order and computes votes. Followers are passive: they merely
copy the leader’s decisions. A final decision is taken into account in vote computations at a
shard once it is received by the shard’s leader.

Failure-free case. To certify a transaction t, a client sends it in a PREPARE message to
the relevant shards (line 10). A process pi handles the message only when it is the leader
of its shard s0 (line 12). We defer the description of the cases when another process pj is
resending the PREPARE message to pi (line 13), and when pi has already received t in the
past (line 14).

Upon receiving PREPARE(t), the leader pi first determines a process p that will serve as
the coordinator of t. If the leader receives t for the first time (line 16), then, similarly to
multi-shot 2PC, it appends t to the certification order and computes the vote based on the
locally available information. The leader next performs an analogue of “phase 2” of Paxos,
trying to convince its shard s0 to accept its proposal. To this end, it sends an ACCEPT
message to s0 (including itself, for uniformity), which is analogous to the “2a” message of
Paxos (line 21). The message carries the leader’s ballot, the transaction t, its position in
the certification order, the vote and the identity of t’s coordinator. The leader code ensures
Invariant 1 in Figure 5: in a given ballot b, a unique transaction-vote pair can be assigned
to a slot k in the certification order.

A process handles an ACCEPT message only if it participates in the corresponding ballot
(line 23). If the process has not heard about t before, it stores the transaction and the vote
and advances the transaction’s phase to prepared. It then sends an ACCEPT_ACK message
to the coordinator of t, analogous to the “2b” message of Paxos. This confirms that the
process has accepted the transaction and the vote. The certification order at a follower is
always a prefix of the certification order at the leader of the ballot the follower is in, as
formalised by Invariant 2. This invariant is preserved when the follower receives ACCEPT
messages due to the FIFO ordering of channels.

The coordinator of a transaction t acts once it receives a quorum of ACCEPT_ACK messages
for t from each of its shards s ∈ shards(t), which carry the vote ds by s (line 29). The
coordinator computes the final decision on t and sends it in DECISION messages to the client
and to each of the relevant shards. When a process receives a decision for a transaction
(line 33), the process stores it and advances the transaction’s phase to decided.

Once the final decision on a transaction is delivered to the leader of a shard, it is taken
into account in future vote computations at this shard. Taking as an example the shard-local
functions for serializability (4) and (5), if a transaction that wrote to an object x is finally
decided to abort, then delivering this decision to the leader may allow another transaction
writing to x to commit.
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1 next← −1 ∈ Z;
2 txn[ ] ∈ N→ T ;
3 vote[ ] ∈ N→ {commit,abort};
4 dec[ ] ∈ N→ {commit,abort};
5 phase[ ]← (λk. start) ∈ N→ {start,prepared,decided};
6 status ∈ {leader, follower,recovering};
7 ballot← 0 ∈ N;
8 cballot← 0 ∈ N;

9 function certify(t)
10 send PREPARE(t) to proc(shards(t));

11 when received PREPARE(t) from pj or a client
12 pre: status = leader;
13 if received from a process pj then p← pj else p← coord(t);
14 if ∃k. t = txn[k] then
15 send ACCEPT(ballot, k, t, vote[k], p) to proc(s0)
16 else
17 next← next + 1;
18 txn[next]← t;
19 vote[next]← fs0({txn[k] | k<next∧ phase[k]=decided∧ dec[k]=commit}, t)u

gs0({txn[k] | k<next∧ phase[k]=prepared∧ vote[k]=commit}, t);
20 phase[next]← prepared;
21 send ACCEPT(ballot, next, t, vote[next], p) to s0;

22 when received ACCEPT(b, k, t, d, p)
23 pre: status ∈ {leader, follower} ∧ ballot = b;
24 if phase[k] = start then
25 txn[k]← t;
26 vote[k]← d;
27 phase[k]← prepared;
28 send ACCEPT_ACK(s0, b, k, t, d) to p;

29 when for every s ∈ shards(t) received a quorum of
ACCEPT_ACK(s, bg, posg, t, dg)

30 send DECISION(t,
d

s∈shards(t) ds) to client(t);
31 forall s ∈ shards(t) do
32 send DECISION(bs, poss,

d
s∈shards(t) ds) to proc(s)

33 when received DECISION(b, k, d)
34 pre: status ∈ {leader, follower} ∧ ballot ≥ b ∧ phase[k] = prepared;
35 dec[k]← d;
36 phase[k]← decided;

Figure 3 Fault-tolerant commit protocol at a process pi in a shard s0: failure-free case.
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37 function recover()
38 send NEW_LEADER(any ballot b such that b > ballot ∧ leader(ballot) = pi) to s0;

39 when received NEW_LEADER(b) from pj

40 pre: b > ballot;
41 status← recovering;
42 ballot← b;
43 send NEW_LEADER_ACK(ballot, cballot, txn, vote, dec, phase) to pj ;

44 when received {NEW_LEADER_ACK(b, cballotj , txnj , votej , decj , phasej) | pj ∈ Q}
from a quorum Q in s0

45 pre: status = recovering ∧ ballot = b;
46 var J ← the set of j with the maximal cballotj ;
47 forall k do
48 if ∃j ∈ J. phasej [k] ≥ prepared then
49 txn[k]← txnj [k];
50 vote[k]← votej [k];
51 phase[k]← prepared;
52 if ∃j. phasej [k] = decided then
53 dec← decj [k];
54 phase[k]← decided;

55 next← min{k | phase[k] 6= start};
56 cballot← b;
57 status← leader;
58 send NEW_STATE(b, txn, vote, dec, phase) to proc(s0) \ {pi};

59 when received NEW_STATE(b, txn, vote, dec, phase) from pj

60 pre: b ≥ ballot;
61 status← follower;
62 cballot← b;
63 txn← txn;
64 vote← vote;
65 dec← dec;
66 phase← phase;

67 function retry(k)
68 pre: phase[k] = prepared;
69 send PREPARE(txn[k]) to proc(shards(txn[k]));

Figure 4 Fault-tolerant commit protocol at a process pi in a shard s0: recovery.
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Leader recovery. We next explain how the protocol deals with failures, starting from a
leader failure. The goal of the leader recovery procedure is to preserve Invariant 3: if in a
ballot b a shard s accepted a vote d on a transaction t at the position k in the certification
order, then this vote will persist in all future ballots; this is furthermore true for all votes the
leader of ballot b took into account when computing d. The latter property is necessary for
the shard to simulate the behaviour of a reliable process in multi-shot 2PC that maintains
a unique certification order. To ensure this property, our recovery procedure includes an
additional message from the new leader to the followers ensuring that, before a follower
starts accepting proposals from the new leader, it has brought its state in sync with that of
the leader (this is similar to [22, 29]). The ballot of the last leader a follower synchronised
with in this way is recorded in cballot.

We now describe the recovery procedure in detail. When a process pi suspects the leader
of its shard of failure, it may try to become a new leader by executing the recover function
(line 37). The process picks a ballot that it leads higher than ballot and sends it in a
NEW_LEADER message to the shard members (including itself); this message is analogous to
the “1a” message in Paxos. When a process receives a NEW_LEADER(b) message (line 39), it
first checks that the proposed ballot b is higher than his. In this case, it sets its ballot to b
and changes its status to recovering, which causes it to stop processing PREPARE, ACCEPT
and DECISION messages. It then replies to the new leader with a NEW_LEADER_ACK message
containing all components of its state, analogous to the “1b” message of Paxos.

The new leader waits until it receives NEW_LEADER_ACK messages from a quorum of shard
members (line 44). Based on the states reported by the processes, it computes a new state
from which to start certifying transactions. Like in Paxos, the leader focusses on the states
of processes that reported the maximal cballot (line 46): if the k-th transaction is prepared
at such a process, then the leader marks it as accepted and copies the vote; furthermore,
if the transaction is decided at some process (with any ballot number), then the leader
marks it as decided and copies the final decision. Given Invariant 2, we can show that the
resulting certification order does not have holes: if a transaction is prepared or decided,
then so are the previous transactions in the certification order.

The leader sets next to the length of the merged sequence of transactions, cballot to
the new ballot and status to leader, which allows it to start processing new transactions
(lines 55-57). It then sends a NEW_STATE message to other shard members, containing the
new state (line 58). Upon receiving this message (line 59), a process overwrites its state with
the one provided, changes its status to follower, and sets cballot to b, thereby recording
the fact that it has synchronised with the leader of b. Note that the process will not accept
transactions from the new leader until it receives the NEW_STATE message. This ensures
that Invariant 2 is preserved when the process receives the first ACCEPT message in the new
ballot.

Coordinator recovery. If a process that accepted a transaction t does not receive the final
decision on it, this may be because the coordinator of t has failed. In this case the process
may decide to become a new coordinator by executing the retry function (line 67). For this
the process just re-sends the PREPARE(t) message to the shards of t. A leader handles the
PREPARE(t) message received from another process pj similarly to one received from a client.
If it has already certified the transaction t, it re-sends the corresponding ACCEPT message to
the shard members, asking them to reply to pj (line 14). Otherwise, it handles t as before.
In the end, a quorum of processes in each shard will reply to the new coordinator (line 28),
which will then broadcast the final decision (lines 30-31). Note that the check at line 14
ensures Invariants 4 and 5: in a given ballot b, a transaction t can only be assigned to a



G. Chockler and A. Gotsman 14:13

1. If ACCEPT(b, k, t1, d1,_) and ACCEPT(b, k, t2, d2,_) messages are sent to the same shard,
then t1 = t2 and d1 = d2.

2. After a process receives and acknowledges ACCEPT(b, k, t, d,_), we have txn = txn�k and
vote = vote�k, where txn and vote are the values of the arrays txn and vote at leader(b)
when it sent the ACCEPT message.

3. Assume that a quorum of processes in s received ACCEPT(b, k, t, d,_) and responded
to it with ACCEPT_ACK(s, b, k, t, d), and at the time leader(b) sent ACCEPT(b, k, t, d,_)
it had txn�k = txn and vote�k = vote. Whenever at a process in s we have status ∈
{leader, follower} and ballot = b′ > b, we also have txn�k = txn and vote�k = vote.

4. If ACCEPT(b, k1, t,_,_) and ACCEPT(b, k2, t,_,_) messages are sent to the same shard,
then k1 = k2.

5. At any process, all transactions in the txn array are distinct.
6. a. For any messages DECISION(_, k, d1) and DECISION(_, k, d2) sent to processes in the

same shard, we have d1 = d2.
b. For any messages DECISION(t, d1) and DECISION(t, d2) sent, we have d1 = d2.

7. a. Assume that a quorum of processes in s have sent ACCEPT_ACK(s, b1, k, t1, d1) and a
quorum of processes in s have sent ACCEPT_ACK(s, b2, k, t2, d2). Then t1 = t2 and
d1 = d2.

b. Assume that a quorum of processes in s have sent ACCEPT_ACK(s, b1, k1, t, d1) and a
quorum of processes in s have sent ACCEPT_ACK(s, b2, k2, t, d2). Then k1 = k2 and
d1 = d2.

Figure 5 Key invariants of the fault-tolerant protocol. We let α�k be the prefix of the sequence
α of length k.

single slot in the certification order, and all transactions in the txn array are distinct.
Our protocol allows any number of processes to become coordinators of a transaction at

the same time: unlike in the vanilla protocol of Figure 2b, coordinators are not consistently
replicated. Nevertheless, the protocol ensures that they will all reach the same decision, even
in case of leader changes. We formalise this in Invariant 6: part (a) ensures an agreement
on the decision on the k-th transaction in the certification order at a given shard; part (b)
ensures a system-wide agreement on the decision on a given transaction t. The latter part
establishes that the fault-tolerant protocol computes a unique decision on each transaction.

By the structure of the hander at line 29, Invariant 6 follows from Invariant 7, since, if
a coordinator has computed the final decision on a transaction, then a quorum of processes
in each relevant shard has accepted a corresponding vote. We next prove Invariant 7.

Proof of Invariant 7. (a) Assume that quorums of processes in s have sent
ACCEPT_ACK(s, b1, k, t1, d1) and ACCEPT_ACK(s, b2, k, t2, d2). Then ACCEPT(b1, k, t1, d1,_)
and ACCEPT(b2, k, t2, d2,_) have been sent to s. Assume without loss of generality that
b1 ≤ b2. If b1 = b2, then by Invariant 1 we must have t1 = t2 and d1 = d2. Assume now
that b1 < b2. By Invariant 3, when leader(b2) sends the ACCEPT message, it has txn[k] = t1.
But then due to the check at line 14, we again must have t1 = t2 and d1 = d2.

(b) Assume that quorums of processes in s have sent ACCEPT_ACK(s, b1, k1, t, d1) and
ACCEPT_ACK(s, b2, k2, t, d2). Then ACCEPT(b1, k1, t, d1,_) and ACCEPT(b2, k2, t, d2,_) have
been sent to s. Without loss of generality, we can assume b1 ≤ b2. We first show that
k1 = k2. If b1 = b2, then we must have k1 = k2 by Invariant 4. Assume now that b1 < b2.
By Invariant 3, when leader(b2) sends the ACCEPT message, it has txn[k1] = t. But then due
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to the check at line 14 and Invariant 5, we again must have k1 = k2. Hence, k1 = k2. But
then by Invariant 7a we must also have d1 = d2. ut

Protocol correctness. We only establish the safety of the protocol (in the sense of the
correctness condition in §2) and leave guaranteeing liveness to standard means, such as
assuming either an oracle that is eventually able to elect a consistent leader in every shard [5],
or that the system eventually behaves synchronously for sufficiently long [12].

I Theorem 2. The fault-tolerant commit protocol in Figures 3-4 simulates the multi-shot
2PC protocol in Figure 1.

We give the proof in [7, §B]. Its main idea is to show that, in an execution of the
fault-tolerant protocol, each shard produces a single certification order on transactions from
which votes and final decisions are computed. These certification orders determine the
desired execution of the multi-shot 2PC protocol. We prove the existence of a single per-
shard certification order using Invariant 3, showing that certification orders and votes used
to compute decisions persist across leader changes. However, this property does not hold of
final decisions, and it is this feature that necessitates adding transitions for forgetting and
recalling final decisions to the protocol in Figure 1 (lines 21 and 24).

For example, assume that the leader of a ballot b at a shard s receives the decision
abort on a transaction t. The leader will then take this decision into account in its vote
computations, e.g., allowing transactions conflicting with t to commit. However, if the leader
fails, a new leader may not find out about the final decision on t if this decision has not yet
reached other shard members. This leader will not be able to take the decision into account
in its vote computations until it reconstructs the decision from the votes at the relevant
shards (line 67). Forgetting and recalling the final decisions in the multi-shot 2PC protocol
captures how such scenarios affect vote computations.

Optimisations. Our protocol allows the client and the relevant servers to learn the decision
on a transaction in four message delays, including communication with the client (Figure 2c).
As in standard Paxos, this can be further reduced to three message delays at the expense of
increasing the number of messages sent by eliminating the coordinator: processes can send
their ACCEPT_ACK messages for a transaction directly to all processes in the relevant shards
and to the client. Each process can then compute the final decision independently. The
resulting time complexity matches the lower bounds for consensus [6, 24] and non-blocking
atomic commit [13].

In practice, the computation of a shard-local function for s depends only on the objects
managed by s: e.g., Objs for (4) and (5). Hence, once a process at a shard s receives the
final decision on a transaction t, it may discard the data of t irrelevant to s. Note that the
same cannot be done when t is only prepared, since the complete information about it may
be needed to recover from coordinator failure (line 67).

5 Related Work

The existing work on the Atomic Commit Problem (ACP) treats it as a one-shot problem
with the votes being provided as the problem inputs. The classic ACP solution is the Two-
Phase Commit (2PC) protocol [15], which blocks in the event of the coordinator failure. The
non-blocking variant of ACP known as Non-Blocking Atomic Commit (NBAC) [38] has been
extensively studied in both the distributed computing and database communities [13, 16, 17,
18, 20, 23, 33, 38]. The Three-Phase Commit (3PC) family of protocols [2, 3, 13, 23, 38] solve
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NBAC by augmenting 2PC with an extra message exchange round in the failure-free case.
Paxos Commit [16] and Guerraoui et al. [18] avoid extra message delays by instead replicating
the 2PC participants through consensus instances. While our fault-tolerant protocol builds
upon similar ideas to optimise the number of failure-free message delays, it nonetheless solves
a more general problem (TCS) by requiring the output decisions to be compatible with the
given isolation level.

Recently, Guerraoui and Wang [19] have systematically studied the failure-free complex-
ity of NBAC (in terms of both message delays and number of messages) for various com-
binations of the correctness properties and failure models. The complexity of certifying a
transaction in the failure-free runs of our crash fault-tolerant TCS implementation (provided
the coordinator is replaced with all-to-all communication) matches the tight bounds for the
most robust version of NBAC considered in [19], which suggests it is optimal. A com-
prehensive study of the TCS complexity in the absence of failures is the subject of future
work.

Our multi-shot 2PC protocol is inspired by how 2PC is used in a number of systems [9,
14, 31, 32, 34, 37, 39]. Unlike prior works, we formalise how 2PC interacts with concurrency
control in such systems in a way that is parametric in the isolation level provided and give
conditions for its correctness, i.e., (6)-(8). A number of systems based on deferred update
replication [30] used non-fault-tolerant 2PC for transaction commit [31, 32, 34, 39]. Our
formalisation of the TCS problem should allow making them fault-tolerant using protocols
of the kind we presented in §4.

Multiple researchers have observed that implementing transaction commit by layering
2PC on top of Paxos is suboptimal and proposed possible solutions [11, 26, 28, 37, 41].
In comparison to our work, they did not formulate a stand-alone certification problem,
but integrated certification with the overall transaction processing protocol for a particular
isolation level and corresponding optimisations.

In more detail, Kraska et al. [26] and Zhang et al. [41] presented sharded transaction
processing systems, respectively called MDCC and TAPIR, that aim to minimise the latency
of transaction commit in a geo-distributed setting. The protocols used are leaderless: to
compute the vote, the coordinator of a transaction contacts processes in each relevant shard
directly; if there is a disagreement between the votes computed by different processes, ad-
ditional message exchanges are needed to resolve it. This makes the worse-case failure-free
time complexity of the protocols higher than that of our fault-tolerant protocol. The proto-
cols were formulated for particular isolation levels (a variant of Read Committed in MDCC
and serializability in TAPIR). Both MDCC and TAPIR are significantly more complex than
our fault-tolerant commit protocol and lack rigorous proofs of correctness.

Sciascia et al. proposed Scalable Deferred Update Replication [37] for implementing seri-
alizable transactions in sharded systems. Like the vanilla protocol in §4, their protocol keeps
shards consistent using black-box consensus. It avoids executing consensus to persist a final
decision by just not taking final decisions into account in vote computations. This solution,
specific to their conflict check for serializability, is suboptimal: if a prepared transaction t
aborts, it will still cause conflicting transactions to abort until their read timestamp goes
above the write timestamp of t.

Dragojević et al. presented a FaRM transactional processing system based on
RDMA [11]. Like in our fault-tolerant protocol, in the FaRM atomic commit protocol
only shard leaders compute certification votes. However, recovery in FaRM is simplified by
the use of leases and an external reconfiguration engine.

Mahmoud et al. proposed Replicated Commit [28], which reduces the latency of transac-
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tion commit by layering Paxos on top of 2PC, instead of the other way round. This approach
relies on 2PC deciding abort only in case of failures, but not because of concurrency con-
trol. This requires integrating the transaction commit protocol with two-phase locking and
does not allow using it with optimistic concurrency control.

Schiper et al. proposed an alternative approach to implementing deferred update replic-
ation in sharded systems [35]. This distributes transactions to shards for certification using
genuine atomic multicast [10], which avoids the need for a separate fault-tolerant commit
protocol. However, atomic multicast is more expensive than consensus: the best known
implementation requires 4 message delays to deliver a message, in addition to a varying
convoy effect among different transactions [8]. The resulting overall latency of certification
is 5 message delays plus the convoy effect.

Our fault-tolerant protocol follows the primary/backup state machine replication ap-
proach in imposing the leader order on transactions certified within each shard. This
is inspired by the design of some total order broadcast protocols, such as Zab [22] and
Viewstamped Replication [29]. Kokocinski et al. [25] have previously explored the idea of
delegating the certification decision to a single leader in the context of deferred update
replication. However, they only considered a non-sharded setting, and did not provide full
implementation details and a correctness proof. In particular, it is unclear how correctness
is maintained under leader changes in their protocol.

6 Conclusion

In this paper we have made the first step towards building a theory of distributed transac-
tion commit in modern transaction processing systems, which captures interactions between
atomic commit and concurrency control. We proposed a new problem of transaction certi-
fication service and an abstract protocol solving it among reliable processes. From this, we
have systematically derived a provably correct optimised fault-tolerant protocol.

For conciseness, in this paper we focussed on transaction processing systems using optim-
istic concurrency control. We hope that, in the future, our framework can be generalised to
systems that employ pessimistic concurrency control or a mixture of the two. The simple and
leader-driven nature of our optimised protocol should also allow porting it to the Byzantine
fault-tolerant setting by integrating ideas from consensus protocols such as PBFT [4].
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