White-Box Atomic Multicast

Alexey Gotsman
IMDEA Software Institute

Abstract—Atomic multicast is a communication primitive that
delivers messages to multiple groups of processes according to
some total order, with each group receiving the projection of
the total order onto messages addressed to it. To be scalable,
atomic multicast needs to be genuine, meaning that only the
destination processes of a message should participate in ordering
it. In this paper we propose a novel genuine atomic multicast
protocol that in the absence of failures takes as low as 3 message
delays to deliver a message when no other messages are multicast
concurrently to its destination groups, and 5 message delays in
the presence of concurrency. This improves the latencies of both
the fault-tolerant version of classical Skeen’s multicast protocol
(6 or 12 message delays, depending on concurrency) and its
recent improvement by Coelho et al. (4 or 8 message delays).
To achieve such low latencies, we depart from the typical way
of guaranteeing fault-tolerance by replicating each group with
Paxos. Instead, we weave Paxos and Skeen’s protocol together
into a single coherent protocol, exploiting opportunities for
white-box optimisations. We experimentally demonstrate that the
superior theoretical characteristics of our protocol are reflected
in practical performance pay-offs.

I. INTRODUCTION

Machine crashes are a fact of life in modern cloud services.
The classical way of enabling the services to tolerate such
failures is using a state-machine replication approach [34]: a
service is defined by a deterministic state machine and is run
on several replicas, each maintaining its own local copy of the
machine. Different copies can be kept in sync using an afomic
broadcast protocol, which delivers application messages to
replicas in some total order and thereby ensures that they
evolve in the same way. Unfortunately, it is often impossible
for a single machine to store the whole service state. A
solution is to partition the service across several process
groups, each containing several replicas to guarantee fault-
tolerance. In this setting, replica consistency can be maintained
using atomic multicast [13]. This accepts application messages
together with sets of groups they are relevant to and delivers
messages to their destination groups according to some total
order, so that each group receives the projection of the total
order onto messages addressed to it (§II). Atomic multicast
thus generalises atomic broadcast, since it provides the same
guarantees in the case when there is a single process group.

Ideally, we want an atomic multicast protocol to be genuine,
i.e., only the processes in the destination groups of a message
should participate in ordering it [19]. This allows messages to
disjoint sets of groups to be ordered in parallel, thus enabling
scalability. For example, genuine atomic multicast has been
used to scale fault-tolerant transaction processing systems [12,
30, 33] and log-based systems [27]. Genuine atomic multicast

Anatole Lefort
Télécom SudParis

Gregory Chockler
Royal Holloway, University of London

essentially requires constructing a total order on application
messages addressed to different groups in a decentralised way.
Achieving this is challenging, and classical implementations
of genuine atomic multicast have suboptimal performance. In
this paper we set out to improve this situation.

The most well-known protocol for atomic multicast is
folklore Skeen’s protocol (described, e.g., in [19]), which
handles a restricted setting where each group consists of a
single reliable process (§III). In a nutshell, the protocol creates
a total order on application messages by assigning them unique
timestamps, computed similarly to Lamport clocks [23]. To
multicast an application message, a client process sends it
to all its destinations. Each destination process generates a
local timestamp from a local logical clock and sends it to
the other destination processes. When a process receives all
local timestamps for a given message, it computes its final
global timestamp as their maximum and advances its clock
to be no lower than the timestamp. A process can deliver an
application message once it is sure that no message will get a
lower global timestamp. If the process receives new messages
while waiting for this condition to be met, the process may
need to delay the delivery of the message past the point when
its global timestamp is known; this phenomenon is known as
a convoy effect [6]. For this reason, Skeen’s protocol has the
latency of 2 message delays when processing a solo message
and 4 message delays when multiple messages are multicast
concurrently to the same group. To capture this difference in
complexity, we introduce metrics, called collision-free latency
and failure-free latency, that respectively bound the latency in
the above two situations (and in the absence of failures).

A common approach to making Skeen’s protocol fault-
tolerant [17, 31] is to get every group to simulate a reli-
able process in Skeen’s using a replication protocol, such
as Paxos [24]. In this case each of the two key actions of
Skeen’s protocol—computing a local timestamp and advancing
the clock above a global timestamp—requires a round trip
from the Paxos leader of each destination group to a quorum
of processes in the same group, to persist the effect of the
action. The resulting protocol has the collision-free and failure-
free latencies of 6 and 12 message delays, respectively; this
is prohibitively high, especially when multicast is used in a
wide-area network.

In this paper we present a novel fault-tolerant atomic mul-
ticast protocol that lowers the collision-free and failure-free
latencies to 3 and 5 message delays, respectively (§IV). This
improves on a recent optimised version of Skeen’s protocol
by Coelho et al. [10], which has the collision-free and failure-

free latencies of 4 and 8 message delays. In particular, our
protocol narrows the 2x gap between the two metrics typical
of existing atomic multicast implementations.

To achieve such low latencies, we depart from the standard
designs of fault-tolerant multicast protocols, which have used
consensus as a black box [10, 17, 29, 31]. Instead, we combine
the ideas from Skeen’s protocol with those of Paxos into a
single coherent protocol. This allows us to exploit several
white-box optimisations that lead to a more efficient solution.

In more detail, our protocol takes the passive replication
approach [21, 28]: a special leader process in each group
computes the timestamps and decides when to deliver an
application message like in Skeen’s protocol; the rest of the
processes merely follow its decisions. To replicate leader
actions when multicasting an application message, the protocol
performs a message exchange similar to the one of Paxos,
but between all leaders of the destination groups on the one
hand and majorities of followers in all destination groups on
the other. This message exchange replicates both of the key
actions of Skeen’s protocol—assigning a local timestamp and
advancing the clock above the global timestamp—in a single
round trip, thus minimising delivery latency. Since in our
protocol the leader takes decisions about delivery unilaterally,
based on its local state, every decision it takes on a message
only makes sense in the context of its previous decisions on
other messages. This requires care when recovering from a
leader failure: recovery cannot be done for each application
message independently (like in multi-Paxos [24]), but has
to be done for all messages at once (like in Viewstamped
Replication [28] and Zab [21]). We rigorously prove that
our white-box protocol is correct (§V). We also propose a
method for analysing the latency of Skeen-based protocols,
which connects collision-free and failure-free latencies and is
applicable to both our protocol and previous proposals.

Finally, we experimentally demonstrate that the superior
theoretical characteristics of our protocol are reflected in prac-
tical performance pay-offs (§VI). Our protocol outperforms the
state-of-the-art protocol by Coelho et al. [10] on latency and
throughput by 2x on average.

II. PROBLEM STATEMENT

We consider an asynchronous message-passing system con-
sisting of a finite set of IV processes P, which can fail by
crashing. A process is correct if it never crashes, and faulty
otherwise. Processes are connected by reliable FIFO channels,
i.e., messages are delivered in the FIFO order, and every
message sent by a process p to another process ¢ is guaranteed
to be eventually delivered by ¢ provided both p and ¢ are
correct.

We fix G € 27 to be a set of process groups and let
|G| = k. We assume that the process groups are disjoint,
ie., Yg1,92 € G.g1 Nga = 0. Every group g € G consists
of 2f + 1 processes, at most f of which can fail. We call a
set of f + 1 processes in g a quorum in g. The assumption
of disjoint groups is standard for practical multicast proto-
cols [10, 17, 29]. It captures common usage scenarios in which

atomic multicast is deployed for replicating a partitioned data
store [12, 30, 33], and it does not prevent collocating processes
that are members of different groups on the same machine.

We consider the problem of implementing atomic multicast
in the above system, which allows a process to send an appli-
cation message m from a set M to a set of destination groups
dest(m) C G. We denote the events of multicasting a message
m and delivering it by multicast(m) and deliver(m),
respectively. For simplicity, we assume that all messages
multicast in a single execution are unique. A message m is
partially delivered if it is delivered by some process in all its
destination groups. A message m is concurrent with a message
m’ if m’ is multicast before m is partially delivered, and m
is multicast before m’ is partially delivered. Two messages m
and m' are conflicting if dest(m) N dest(m’) # 0.

An algorithm is a correct implementation of atomic multi-
cast if its every run satisfies the following:

« Validity. If a process in a group g delivers a message
m, then some process has multicast m before and g €
dest(m).

« Integrity. Every process delivers a message at most once.

e Ordering. There exists a total order < on the set of all
messages multicast in the run such that, if a process p
delivers m, then for all messages m’ < m, p delivers m’
before m provided p € g for some g € dest(m’).

o Termination. For every message m, if m is either multi-
cast by a correct process or delivered by any process, then
for all groups g € dest(m), m is eventually delivered by
a quorum of processes in g.

In particular, the ordering property ensures that each group
receives the projection of a single total order onto messages
addressed to it.

A protocol implementing atomic multicast is genuine [17,
19] if it satisfies the following minimality property in every
run: if m is multicast in the run, then for every process p that
participates in ordering m, the process p is either m’s sender
or a member of some g € dest(m).

By instantiating atomic multicast with a single group com-
prising all processes in P we get atomic broadcast [20], which
delivers messages to all processes. Since atomic broadcast is
equivalent to consensus [7], it cannot be implemented in an
asynchronous environment with failures [16]. To circumvent
this impossibility, we assume that the system eventually be-
comes failure-free, i.e., the process failures cease to occur and
message delays are upper-bounded by an a priori fixed constant
0. Global stabilization time (GST) [15] is the time (unknown
to the algorithm) such that the onset of a failure-free period
is guaranteed to occur no later than at GST in every run.

To measure time complexity of an atomic multicast imple-
mentation, we assign every event in a run a non-decreasing
real-valued time such that after GST, the time elapsing be-
tween every pair of matching send and receive events of a
protocol message is at most J, and every step executed locally
by a process is instantaneous. For a message m multicast in
a run, and a group g € dest(m), m’s delivery latency with
respect to g is the time elapsing between multicast(m) and

1 clock < 0€eN;
2 Phase[] <— (Ak.START) €
(M — {START, PROPOSED, COMMITTED});
3 LocalTS[] € M — (N x G);
4 GlobalTS[] € M — (N x G);
5 Delivered + (Ak.FALSE) € M — {FALSE, TRUE}

6 multicast(m)
| send MULTICAST(mn) to dest(m);

8 when received MULTICAST(m)

9 clock < clock + 1;

10 LocalTS[m] « (clock, go);

1 Phase[m] <— PROPOSED;

12 send PROPOSE(m, go, LocalTS[m]) to dest(m);

13 when received PROPOSE(m, g, Lts(g))
for every g € dest(m)
14 GlobalTS[m] < max{Lts(g) | g € dest(m)};
15 clock < max{clock, time(GlobalTS[m])};
16 Phase[m] <~ COMMITTED;
17 forall {m’ | Phase[m’] = COMMITTED A
Delivered[m'] = FALSE A
VYm''. Phase[m| = PROPOSED —>
Local TS[m”] > Global TS[m/]}
ordered by GlobalTS[m’] do
18 Delivered[m/] <— TRUE;
19 L deliver(m');

Fig. 1. Skeen’s protocol at a process p; € go.

the earliest deliver(m) by some process in g. An atomic
multicast protocol has a failure-free latency of A if for every
run there exists a time ¢t > GST such that for every application
message m multicast after ¢, m’s delivery latency is at most
A with respect to all groups in dest(m). A protocol has a
collision-free latency of A if for every run, there exists a time
t > GST such that for every application message m multicast
after ¢ that does not conflict with any concurrent messages
multicast by correct processes, m’s delivery latency is at most
A with respect to all groups in dest(g). Note that our latency
metrics are computed based on the first delivery of a message
in every destination group, whereas metrics used in previous
work use the last one [31]. Our choice more faithfully reflects
the client-perceived latency in practical use cases of multicast,
where the first process that delivers a message can process it
and reply to the client [12, 30, 33].

III. SKEEN’S PROTOCOL

We first consider an idealised setting where each group in
G consists of a single reliable process. In this setting, genuine
atomic multicast can be implemented using folklore Skeen’s
protocol (described, e.g., in [19]). This protocol serves as a
basis for our optimised fault-tolerant protocol and, hence, we
review it first. We give its pseudocode in Figure 1.

The protocol creates a total order on application messages
by assigning them unique timestamps, computed similarly to
Lamport clocks [23]. Timestamps are pairs (t,g) of a non-
negative integer ¢ € N and a group identifier g € G. They are
ordered lexicographically using an arbitrary total order on G,
with a special timestamp L being the minimal timestamp. For
a timestamp ts = (t, g) we let time(ts) = ¢.

To multicast an application message m, a process sends it
in a MULTICAST message to the destination groups dest(m)
(line 6). Each process maintains an integer clock, used to
generate timestamps. When a process in a group go receives
MULTICAST(m) (line 8), it increments the clock and computes
a local timestamp of m at group go as the pair of the resulting
clock value and the group identifier go. This timestamp can
be viewed as gg’s proposal of what the final timestamp of m
should be; it is stored in a LocalTS array'. The process keeps
track of the status of application messages being multicast in
an array Phase, whose entries initially store START. When
the process computes a local timestamp for m, it advances
m’s phase to PROPOSED. It then sends the local timestamp
in a PROPOSE message to all the destinations of m (including
itself, for uniformity).

A process that is a destination of m acts once it receives
a PROPOSE message for m from each destination group
g € dest(m), which carries m’s local timestamp Lts(g) at
g (line 13). The process computes the final global timestamp
of m as the maximal of its local timestamps and stores it in a
GlobalTS array. The process also advances the phase of m to
COMMITTED and ensures that its clock is no lower than the
first part of the global timestamp. Note that all destinations of
m will receive the same sets of local timestamps for m and
will thus compute the same global timestamp. Additionally,
global timestamps are unique for each application message:
if two messages got the same global timestamp (n, g), then
they must have got the same local timestamp from group g;
but this is impossible because a process increments its clock
when issuing a local timestamp (line 9).

Having computed the global timestamp for m, the process
tries to deliver one or more committed messages (line 17).
A Boolean array Delivered keeps track of whether a given
message has been delivered. Messages are delivered in the
order of their global timestamps; hence, the process can deliver
a message m’ only if it has already delivered all messages
addressed to it with a lower global timestamp. A subtlety
is that the process does not know the global timestamps for
the messages m’ that are in the PROPOSED phase. Hence,
the process only delivers m/ if all such messages m’ have
local timestamps higher than the global timestamp of m':
then their global timestamps will also be higher than that of
m'. Note that this check is complete: application messages
the process will receive for multicasting after delivering m’
will get global timestamps higher than GlobalTS[m/]. This is
because, when the process commits m/’, it advances its clock

To aid understanding, in this paper we capitalise the names of arrays and
vectors.

neEP 2 P
multicast(m) MULTICAST(M) N
MULTICAST(m)
26
goyosﬁmﬂ
multicast(m') MuLTICAST(M') >
MULTICAST(mv) Commit m
Rowzosﬁmﬂ 2
3
Commit m'
deliver(m)
81 82
Fig. 2. Message-flow diagram illustrating the convoy effect in Skeen’s
protocol.

so that it is no lower than GlobalTS[m/] (line 15). Thus, any
application message the process receives afterwards will get
a local timestamp at go higher than GlobalTS[m’] and, thus,
will also get a global timestamp higher than GlobalTS[m/].

Theorem 1: Skeen’s protocol in Figure 1 is a genuine
implementation of atomic multicast among singleton groups.

Note that in Skeen’s protocol a process can increase its
clock at any time without violating correctness. In §IV we
use this insight to construct a fast fault-tolerant version of this
protocol.

Skeen’s protocol has the collision-free latency of 2§
(MULTICAST, PROPOSE). However, its failure-free latency is
higher because in this protocol a committed message m is
blocked from delivery as long as there are any uncommitted
messages with a local timestamp lower than m’s global times-
tamp. As a result, m’s delivery latency at a process p; may
exceed the collision-free latency of 24 in case an application
message is received before the p;’s clock has been advanced
past m’s global timestamp—a phenomenon known as a convoy
effect [6].

The exact amount of extra delay depends on the timing of
the arrival of a conflicting message m/, and can, in the worst
case, be as high as 26. This is demonstrated by the scenario
in Figure 2, where the MULTICAST(m’) message, triggered
by multicast(m') with dest(m’) = {g1, g2}, is received by
p1 immediately before m is committed at this process. Since
p1’s clock is still lower than GlobalTS[m] at the time m’
is received, this message is assigned a local timestamp less
than GlobalTS[m]. As a result, the delivery of m must now
be delayed until m’ commits. In the worst-case scenario of
Figure 2 this takes another 26, because MULTICAST(m') takes
close to 0 to arrive at pp, but exactly § to arrive at po; then
PROPOSE(m’) from py also takes exactly ¢ to arrive at p;.
Thus, the failure-free latency of Skeen’s protocol is in fact 44,
i.e., double its collision-free latency.

IV. WHITE-BOX PROTOCOL

We now consider the general setting where each group
consists of 2f + 1 processes, out of which at most f can fail.

clock+~0€N
Phase[] <— (Ak. START) €
M — {START, PROPOSED, ACCEPTED, COMMITTED }
LocalTS[] €e M — (N x G)
GlobalTS[] € M — (N x G)
Delivered <— (Ak. FALSE) € M — {FALSE, TRUE}
status € {LEADER, FOLLOWER, RECOVERING}
challot <~ L € (Nx P)U{Ll}
ballot +— L € (Nx P)U{Ll}
Cur_leader[] € G — P
max_delivered_gts < L € (Nx G)U{L}

Fig. 3. Variables of a process in the white-box multicast protocol.

A straightforward way to implement atomic multicast in this
setting is to use state-machine replication to make a group
simulate a reliable process in Skeen’s protocol [17]; this is
usually based on a consensus protocol such as Paxos [24].
Then in addition to MULTICAST and PROPOSE messages, the
resulting protocol requires two round trips from the Paxos
leader of a group to a quorum of processes in the same group—
one to persist the local timestamp (line 10 in Figure 1) and
another to persist the global timestamp and update the clock
(lines 14-15). Hence, as we show in §V, the resulting protocol
has the collision-free latency of 66 and failure-free latency is
126 (due to the convoy effect). In this section we present a
protocol that lowers the collision-free latency to 36 and the
failure-free latency to 50 by weaving together Skeen’s protocol
across groups and a Paxos-like protocol within each group.

We list the variables maintained by our protocol in Figure 3,
give its pseudocode in Figure 4, illustrate the message flow of
the protocol in Figure 5 and summarise the key invariants used
in its proof of correctness in Figure 6.

Preliminaries. Every process in a group is either the leader
of the group or a follower. If the leader fails, one of the
followers takes over. A major design decision we take in our
protocol is to use the passive replication approach [21, 28]:
only the leader computes the timestamps and decides when
to deliver an application message. Followers are passive: they
merely store the leader’s decisions, so that upon the leader
failure a new leader could recover the information necessary
to continue multicast. A process maintains the same variables
as in Skeen’s protocol (Figure 1) and a few additional ones.
A status variable records whether the process is a LEADER, a
FOLLOWER or is in a special RECOVERING state used during
leader changes. A period of time when a particular process p;
acts as a leader is denoted using a ballot (n,p;)—a pair of
an integer n and the process identifier p;. Ballots are ordered
lexicographically using an arbitrary total order on processes,
with a special ballot L being the minimal ballot. For a ballot
b = (n,p;) we let leader(b) = p;. At any given time, a process
participates in a single ballot, which is stored in a variable
cballot and never decreases. During leader changes we also
use an additional ballot variable ballot.

1
2

® N v AW

11

12

13
14

15
16

18
19
20
21

22
23

24
25

26
27
28
29
30
31

32
33
34

multicast(m)
| send MULTICAST(mn) to {Cur_leader[g] | g € dest(m)};

when received MULTICAST(m)

pre: status = LEADER;

if Phase[m] = START then
clock + clock + 1;
LocalTS[m] « (clock, go);
Phase[m] - PROPOSED;

| send ACCEPT(m, go, cballot, LocalTS[m]) to dest(m);

when received ACCEPT(m, g, Bal(g), Lts(g))
for every g € dest(m)
pre: status € {FOLLOWER, LEADER } A
cballot = Bal(go);
if Phase[m] € {START, PROPOSED} then
| Phase[m] « ACCEPTED;

Local TS[m] < Lts(go);
clock <— max{time(max{Lts(g) | g € dest(m)}),
clock};
forall g € dest(m) do
| send ACCEPT_ACK(mn, go, Bal) to leader(Bal(g));

when received ACCEPT_ACK(m, g, Bal)
from a quorum of p; € g in each g € dest(m)
including myself and previously received
ACCEPT(m, g, Bal(g), Lts(g)) for every g € dest(m)
pre: status = LEADER A cballot = Bal(go);
Global TS[m] + max{Lts(g) | g € dest(m)};
Phase[m] <~ COMMITTED;
forall {m' | Phase[m'] = COMMITTED A
Delivered[m'] = FALSE A

= Local TS[m"] > Global TS[m/]}
ordered by GlobalTS[m’] do
Delivered[m'] < TRUE;
send DELIVER(m/, cballot,
LocalTS[m/], Global TS[m/]) to go;

when received DELIVER(m, b, Its, gts)
pre: status € {FOLLOWER, LEADER} A
cballot = b A max_delivered_gts < gts;
Phase[m] <— COMMITTED;
LocalTS[m] « lts;
Global TS[m] «+ gts;
clock «+ max{clock, time(gts)};
max_delivered_gts < gts;
deliver(m);
function retry(m)
pre: Phase[m] € {PROPOSED, ACCEPTED};
send MULTICAST(m) to {Cur_leader[g] | g € dest(m)};

vYm”. Phase[m”| € {PROPOSED, ACCEPTED }

35
36

37
38
39
40
a1

42

43
44
45
46
47
48
49
50
51
52
53

54
55
56

57

58
59
60
61

62

63

64

65
66

67
68

function recover()

send NEWLEADER (any ballot of the form (_, p;)

B higher than ballot) to go;

when received NEWLEADER(b) from p;

pre: b > ballot;

status <~ RECOVERING;

ballot < b;

send NEWLEADER_ACK(ballot, cballot, clock,
Phase, LocalTS, Global TS) to p;;

when received NEWLEADER_ACK(b, cballot(p;),
clock(p;), Phase(p;), LocalTS (p;), GlobalTS (p;))
from a quorum of p; € gy
pre: status = RECOVERING A ballot = b;
reinitialise Phase, LocalTS, GlobalTS;
var J < the set of j with maximal cballot(p;);
forall m do
if 3j. Phase(p;)[m] = COMMITTED then
Phase[m] «- COMMITTED;
Local TS[m] <= LocalTS (p;)[m];
Global TS[m] < GlobalTS (p;)[m];
else if 35 € J.phase(p;)[m] = ACCEPTED then
Phase[m] <~ ACCEPTED;
L LocalTS[m] <= LocalTS (p;)[m];

clock <— max{clock(p;)};
cballot = b;
send NEW_STATE(b, clock, Phase, Local TS, GlobalTS)

to go \ {p:i};

when received
NEW_STATE(b, clock, Phase, Local TS, GlobalTS)
from p;
pre: status = RECOVERING A ballot = b;
status <— FOLLOWER;
cballot + b;
clock < clock; Phase <— Phase;
LocalTS < LocalTS; GlobalTS «+ GlobalTS;
send NEWSTATE_ACK(b) to p;;

when received NEWSTATE_ACK(b)
from a set of processes that
together with p; form a quorum in g,
if status = RECOVERING A ballot = b then
status <— LEADER;
forall {m' | Phase[m'] = COMMITTED A
¥m/ . Phase[m'] = ACCEPTED
= LocalTS[m"] > GlobalTS[m/])}
ordered by GlobalTS[m/] do
Delivered[m’] = TRUE;
send DELIVER(m/, cballot,
Local TS[m/], Global TS[m/]) to go;

Fig. 4. White-box multicast protocol at a process p; € go.

pPEP

Leader Follower

}5

Leader Follower

MULTICAST(m)

ACCEPT(m)

o

/ \
ACCEPT_ACK(m)
"‘\1) 9 }

1)
| — ‘/0
pa—

Commit m -1 Commit m
DELIVER } é
—— ——
G G,

Fig. 5. Message-flow diagram illustrating the behaviour of the white-box
protocol in a collision-free scenario. On the right-hand side we give the
maximum time each protocol step can take.

Normal operation. To multicast an application message m,
a process sends it in a MULTICAST message to the current
leader of every group g € dest(m) (line 1), which is deter-
mined using a mapping Cur_leader. This mapping need only
give a guess as to the identity of the current leaders. If the
guess is wrong, the multicasting process can always send the
message to all the processes in a given group to find out who
its leader is (omitted from the pseudocode).

A process p; handles the message only when it is indeed
the leader of its group gg (line 3). When the leader receives
m for the first time (line 5), it performs the same actions as
in Skeen’s protocol (lines 9-11 in Figure 1): it increments the
clock, computes the local timestamp, and sets the phase of m
to PROPOSED.

Like in Skeen’s protocol, the leader’s next goal is to
communicate its local timestamp proposal to the leaders of
the other destination groups of m. A key idea used to achieve
fault-tolerance and reduced latency in our protocol is not to
send local timestamps to the leaders directly, but route them
through a quorum of processes in each destination group, to
ensure their durability. Namely, the leader sends an ACCEPT
message including its ballot and the computed local timestamp
to all processes in dest(m) (including itself, for uniformity,
line 9); this message is analogous to the “2a” message of
Paxos. As we explain in the following, due to failures the
leader may receive the same MULTICAST(m) message twice.
In this case the leader resends the ACCEPT message with the
locally stored data for m. This ensures Invariant 1: in a given
ballot, a message can be assigned at most one local timestamp.

A process that is a destination of m acts once it receives
an ACCEPT message for m from the leader of each of the
destination groups g € dest(m) (line 10). The message carries
the local timestamp proposal Lt¢s(g) and the ballot Bal(g) of
the leader making the proposal. The process checks that it

participates in the ballot Bal(go) of the leader of its group
go it received the message from. Then the process advances
the phase of the message m to ACCEPTED, stores its local
timestamp in the Local TS array (line 13) and ensures its clock
is no lower than the global timestamp obtained by taking the
maximum of the local timestamps Lts(g) of m (line 14). Thus,
lines 13 and 14 in our protocol can be viewed as replicating
lines 10 and 15 of Skeen’s protocol (Figure 1) throughout the
process group. The process acknowledges the acceptance of
the local timestamps by sending an ACCEPT_ACK message to
the leaders who made the proposals, tagged with the vector
of ballots Bal in which these proposals were made at the
destination groups; this message is analogous to the “2b”
message of Paxos.

A leader who made a local timestamp proposal for m waits
until it receives a quorum of ACCEPT_ACK messages for m
with matching ballot vectors from each of the destination
groups dest(m) (line 17); Invariant 1 ensures that the different
ACCEPT_ACK messages correspond to the same set of local
timestamp proposals. At this point the leader considers that
all local timestamps for m are agreed, and thus it advances
the phase of m to COMMITTED, computes its final global
timestamp as the maximum of the local timestamps and stores
it in the GlobalTS array. The leader then tries to deliver one
or more committed messages like in Skeen’s protocol, in the
order of their global timestamps (line 21, corresponding to
line 17 in Figure 1). To this end, it sends the data about
each message m’ to deliver in a DELIVER message to all the
members of its group.

Since our communication channels are FIFO, during failure-
free execution a process receives DELIVER messages in the
order the leader of its group sends them. Upon receiving such
a message, the process stores the enclosed information and de-
livers the corresponding application message (line 24). As we
explain in the following, when failures occur, a process may
receive duplicate DELIVER messages. To handle this, each pro-
cess maintains the highest global timestamp of an application
message it has delivered in a variable max_delivered_gts and
ignores DELIVER messages carrying lower global timestamps.

Discussion of normal operation. As we mentioned earlier,
our optimised protocol can be viewed as weaving together the
steps from Skeen’s protocol and Paxos. In particular, when
multicasting a local application message m with dest(m) =
{90}, the protocol exactly follows the flow of Paxos: the
leader of gy sends a proposal to all processes in gyg (ACCEPT)
and waits for a quorum of acknowledgements (ACCEPT_ACK),
whereupon it delivers m (DELIVER). Like in Paxos, when a
process receives the ACCEPT message from the leader (line 10),
the process checks that it participates in the ballot the leader is
in (line 11), thus ensuring that it only stores local timestamps
(line 13) issued by the leader it supports.

For a global application message, the flow of the protocol
is also similar to the one of Paxos, but performed between
multiple leaders on the one hand and multiple groups of
followers on the other. However, note that a process does not

perform any checks on ballots in ACCEPT messages received
from remote groups (line 10); these ballots are only used
in line 17 to ensure that different ACCEPT_ACK messages
correspond to the same set of local timestamp proposals.
Hence, the ACCEPT messages may well come from old leaders
of remote groups that have since been deposed and whose
local timestamp proposals will be rejected by their groups.
The update to the clock at line 14 may thus be performed
based on such invalid local timestamps. A key insight used in
our protocol is that this situation does not violate correctness.
The clock variables at processes of the same group are used
to simulate the clock variable of a reliable process in Skeen’s
protocol: as we explain in the following, if the group leader
fails, a new leader recovers the clock value from the clocks
at followers. But as we noted in §III, the clock variable in
Skeen’s protocol can always be safely increased.

Hence, the Paxos-like ACCEPT and ACCEPT_ACK messages
in our protocol can be viewed as replicating in one go both
the local timestamp assignment (line 10 in Figure 1) and the
clock increase (line 15 in Figure 1), with the latter done
speculatively, before the local timestamps are agreed. Once
a leader receives a quorum of ACCEPT_ACK messages from
each of the destination groups (line 17 of our protocol), it
knows that the clocks at the processes in these quorums have
already been advanced to be no lower than the corresponding
global timestamp. The leader can thus avoid a round trip
to replicate the clock update, required in the naive fault-
tolerant version of Skeen’s protocol we presented earlier. The
leader then replicates the global timestamps off the critical
path, in DELIVER messages, by exploiting the fact that global
timestamps are uniquely determined by local timestamps.

Key invariants. We now describe the key invariants of the
protocol used to prove its correctness, which also motivate the
design of recovery from leader failures. Invariant 2 ensures
that, if a quorum of processes in a group go accepted the
same set of local timestamp proposals Lts for an application
message m, then the message m and its local timestamp
Lts(go) at go will persist in all ballots higher than the ballot
Bal(go) at which gy accepted them (a, b); furthermore, the
clock values at these ballots will be no lower than the global
timestamp computed from the local timestamp proposals Lts
for m (c). Lines 12, 13 and 14 in our protocol contribute to
preserving the clauses (a), (b) and (c) of the invariant, respec-
tively. Since Invariant 2(a, b) ensures that local timestamps
accepted by a quorum persist across leader changes, we then
get Invariant 3(a), ensuring that each group agrees on the local
timestamp of a given application message. Since the global
timestamp for an application message is computed as the
maximum of local timestamps accepted by quorums in each
destination group, from Invariant 3(a) we get Invariant 3(b),
ensuring that the system agrees on the global timestamp
of each message. Finally, similarly to how it was done for
Skeen’s protocol, we can show Invariant 4, ensuring that global
timestamps are unique for each message.

Finally, Invariant 5 ensures that application messages are

sent of the form
ACCEPT(m, g, b, ltss),

1) For any two messages
ACCEPT(m, g,b, lts1) and
we must have lts; = ltso.

2) Assume that at some point a quorum of processes in gg
have received the set of messages

{ACCEPT(m, g, Bal(g), Lts(9)) | g € dest(m)} (1)
and responded to them with
ACCEPT_ACK(m, go, Bal).)

Whenever at a process in go we have cballot > Bal(go),
we also have:

a) Phase[m] € {ACCEPTED, COMMITTED};

b) LocalTS[m] = Lts(go);

¢) clock > time(max{Lts(g) | g € dest(m)});

3) a) For any messages DELIVER(m,_,lts;,_) and

DELIVER(m,_, ltss,) sent to processes in the

same group, we have lts; = ltss.

b) For any messages DELIVER(m,_,_,gts;) and
DELIVER(m,_, _, gtsy) sent to any groups, we
have gts; = gts,.

4) For any DELIVER(m1, _,_, gtsy) and
DELIVER(ms, _,_, gts,) messages sent, if m; # ma,
then gts; # gtss.

5) Assume that at some point a quorum of processes
in go have received the set of messages (1) and re-
sponded to them with (2) and that this quorum includes
leader(Bal(gg)). Let gts = max{Lts(g) | g € dest(m)}
and let LocalTS, be the projection of LocalTS when
leader(Bal(gg)) sent its ACCEPT_ACK to messages m’
such that Phase[m'] # START A LocalTS[m/] < gts.
Whenever at a process in go we have cballot > Bal(go),
we also have:

Vm'. Phase[m’] # START A Local TS[m/] < gts
= LocalTS[m’] = LocalTSy[m/]. (3)

6) Starting from some time ¢ > GST, for every group g € G
there exists a quorum @ C g of correct processes, and
pi € @ such that all members of) permanently follow
p; as their leader, and all correct processes in P have
their Cur_leader[g] = p;.

Fig. 6. Key invariants of the white-box multicast protocol.

delivered in the order of their global timestamps, despite leader
changes. Similarly to Invariant 2, this invariant assumes that
a quorum of processes in a group go € dest(m), including its
leader leader(Bal(go)), have accepted the same set of local
timestamp proposals Lts for m, yielding a global timestamp
gts. The invariant ensures that, in any future ballot of group
go, a process may not have messages with local timestamps
less than gts that the leader leader(Bal(gp)) did not know
about when it accepted the local timestamp for m. Given
this invariant and the check on local timestamps the leader

performs before delivering an application message (line 21),
if a leader of a group go delivers a message m with a global
timestamp g¢gts, then it can be sure that no message it is not
aware of will get a local timestamp lower than gts in future
ballots, and thus no message will get a lower global timestamp.

Invariant 5 is proved using Invariant 2(c): under the assump-
tions of the former invariant, the latter one ensures that the
clock of any leader of a future ballot will be no lower than
gts. Then any new application message this leader receives
will get a local timestamp at g higher than gts.

Leader recovery. We assume that each group ¢ € G is
equipped with a leader selection service (LSS), which is
responsible for nominating a single member of g as a potential
new leader. The LSS implementation exploits the knowledge
of the upper bound on the failure-free message propagation
delay § to guarantee that eventually the same correct member
of g is permanently suggested by LSS as a leader of g to all its
correct members. Examples of LSS implementations satisfying
this property can be found in [5, 7, 25, 26].

A leader recovery procedure for a group ¢ is activated
whenever LSS nominates a new process as a leader candidate,
or the current leader fails to collect a quorum of responses
to one of its messages. The main goal of the procedure is to
preserve Invariants 2 and 5. Ensuring the latter is particularly
subtle: for this, before the new leader starts multicast, it must
bring a quorum of followers in sync with its state (this is
similar to [21, 28]). Hence, a new leader is elected in two
stages. First, processes vote to join the ballot of a prospective
leader, which they record in a variable ballot; like cballot,
this variable can only increase. Second, processes receive and
acknowledge an initial state from the new leader and set
cballot to ballot. The leader only resumes normal operation
after it gets a quorum of such acknowledgements. Note that
we thus always have cballot < ballot.

In more detail, a process p; initiates the recovery procedure
by invoking the recover function (line 35), which attempts
to establish a new ballot with p; as its leader. The process
picks a ballot that it leads and higher than the last ballot
it joined, and sends the ballot in a NEWLEADER message to
the group members (including itself); this message asks the
group members to support the process as the new leader and
is analogous to the “la” message in Paxos. When a process
receives a NEWLEADER(b) message (line 37), it first checks
that the proposed ballot b is higher than the last ballot it
joined. In this case it sets ballot to b and changes its status
to RECOVERING, which causes it to stop normal message
processing. The process then replies to the new leader with
a NEWLEADER_ACK message containing all components of its
state; this message serves as a vote for the new leader and is
analogous to the “1b” message of Paxos.

The new leader waits until it receives NEWLEADER_ACK
messages from a quorum of group members (line 42). Based
on the states reported in them, it computes a new state from
which to resume multicast according to the following rules.
First, if an application message m is COMMITTED at some

process, then the leader marks it as COMMITTED and copies
its local and global timestamps (line 47). If a message m is
not COMMITTED at any process, then, like in Paxos, the leader
looks at the states of processes that reported the maximal
cbhallot (line 45): if a message m is ACCEPTED at such a
process, then the leader marks it as ACCEPTED and copies
its local timestamp (line 51). Like for Paxos, we can show
that these rules preserve Invariant 2(a, b). Finally, the leader
sets clock to the maximum of the clock values reported by
processes, to preserve Invariant 2(c), and sets cballot to the
new ballot.

The new leader next ensures that at least a quorum of
processes in its group are in sync with its new state. To this
end, it sends a NEW_STATE message with the new state to the
other group members (line 56). Upon receiving this message
(line 57), a process overwrites its state with the one provided,
changes its status to FOLLOWER, and sets cballot to b, thereby
recording the fact that it has synchronised with the leader of
b. The process then replies to the new leader with a message
NEWSTATE_ACK(b) confirming this.

The new leader waits until it receives NEWSTATE_ACK from
a set of processes that together with it form a quorum
(line 63). The leader may have application messages ready
to be delivered that some of the followers have not delivered
yet. In fact, different followers may have delivered different se-
quences of application messages, because the previous leader
may have crashed in between sending DELIVER messages to
different followers. To deal with this, the leader delivers all
committed messages it can, starting from the beginning. This
does not violate correctness since, as we explained earlier,
followers check for duplicate DELIVER messages using the
max_delivered_gts variable. At the end, the new leader sets
status to LEADER, which allows it to start normal operation.

If at any point in the execution of the protocol, the current
leader (or a leader candidate) time-outs on acquiring a quorum
of responses to one of its messages, it falls back to leader
recovery with a higher ballot by invoking the recover func-
tion. This guarantees that Invariant 6 in Figure 6 holds, which
ensures that a stable leader will eventually be established.

Discussion of leader recovery. We now highlight some of
the subtleties of the recovery procedure. First, note that upon
a leader change, the value of the clock at leaders may actually
decrease. For example, assume p; € go is a leader who issued
a local timestamp (¢, go) for m and thus set clock = ¢. If p;
fails before a quorum of processes in gy accepts m, the new
leader may derive its initial state from a quorum of processes
that did not see m and end up with a clock value lower than
t. This does not violate correctness: to ensure that messages
are delivered in the order of their timestamps we only need to
ensure that the clock does not fall below the global timestamp
of a message accepted by a quorum, as stated by Invariant 2(c).

We next illustrate why it is important for a leader to
synchronise its state with the followers before starting normal
operation. Assume a process p; € go is a leader of a ballot
b1 who has issued a local timestamp [lts for an application

message m and replicated it to some of its followers in gg.
Assume further that before p; manages to reach a quorum,
another process p» € go becomes the leader at by > b;. To
compute its initial state, p» may query a quorum that does
not contain any processes that saw m and lts, so that its
initial state will exclude these. Assume that at a later point po
commits and delivers a message m’ with a global timestamp
gts’ > lts. Now imagine there is yet another leader change
and a process p3; becomes a leader at a ballot b3 > bs.
Since before po delivered m/, it got a quorum of followers
to accept its initial state and set cballot = by, when p3 queries
a quorum to compute its initial state, it is guaranteed to see
at least one process with cballot = bs; this process will report
a state excluding m and Its. According to the rule used to
compute the initial state in line 51, p3 will then disregard any
processes that accepted m and [ts at by < by. This will ensure
Invariant 5: the local timestamp Its for m, which p did not
know about when it committed m/, will never be resurrected
upon recovery. Hence, the message m will never be able to
get a timestamp lower than gts’, and the decision by p> to
deliver m’ will stay valid.

Message recovery. In the above scenario message m gets
lost at the group go due to a leader failure. Even if other
destination groups have received it, its processing will not
progress. To deal with this situation, the multicasting process
can just resend the MULTICAST(m) message. Then groups that
have not previously received m will start processing it, and
groups that have already processed m will just resend the
corresponding protocol messages (lines 9 and 16), which will
unblock the processing of m.

The processing of a message m can also get stuck if the
process submitting it for multicast fails in between sending
MULTICAST(m) messages to different leaders (line 2), so that
one group g1 € dest(m) receives m and another group go €
dest(m) does not receive it. This will cause m to get stuck
in the PROPOSED phase at the leader of g;, since the group
g2 will never send a local timestamp proposal for m. The
leader of g; can again recover from this situation by resending
the MULTICAST(m) message to all destination groups of m
(line 32). The same mechanism can be used to resume the
processing of an accepted message after a leader change.

V. CORRECTNESS AND LATENCY ANALYSIS

Theorem 2: The white-box protocol in Figure 4 is a correct
and genuine implementation of atomic multicast.

Due to space constraints, we defer the proof of the theorem
to [18, §A]. The proofs of the Ordering, Validity and Integrity
properties rely on Invariants 1-5 in Figure 6. The proof of
Termination relies on Invariant 6, which implies

Lemma 1: Let t be the time stipulated by Invariant 6 in
Figure 6. Then for all application messages m and all groups
g € dest(m), if p; is the leader of g, and m is either known
to p; at t or received at p; after ¢ via MULTICAST(m), then m
is eventually committed at p;.

In particular, the lemma implies that there exists a time ¢’ >
t such that after ¢/, the leaders of all groups in G do not have
any uncommitted messages that were multicast before ¢. The
lemma and this consequence hold not just for our white-box
protocol, but also for other protocols we consider in this paper,
such as the naive fault-tolerant version of Skeen’s protocol
from §IV. Using this fact, we now show how to establish
the collision-free and failure-free latencies of a Skeen-based
protocol A by analysing the delivery latency of a message
multicast after ¢'.

We first consider the collision-free case. Let D be the
commit latency of A, i.e., the maximum amount of time
elapsing between the events of multicasting a message m
after ¢ and m being committed by the leader of some group
in dest(m). Consider an application message m that was
multicast at time ¢; > ¢’ and let p; be the leader of a group
g € dest(m). By Lemma 1, there exists a time to > #;
at which p; commits m. Suppose that m is not concurrent
with any conflicting messages that were multicast by correct
processes. Consider an arbitrary message m’ known to p; at
ta. If m’ was multicast by a correct process after ¢, it must
have been delivered, and therefore committed at p;, before
t1. Otherwise, m’ is multicast either before ¢ or by a faulty
process. Since failures stop after GST, the latter implies that
m' was multicast prior to GST < ¢. Thus, m’ must have been
multicast before ¢ in both cases, which, by the choice of ¢/,
implies that m’ was committed at p; before ¢; > ¢’. Thus, at
ta, p; does not have any uncommitted messages other than m,
and therefore can deliver m. Since ¢5 < t; + D, we have

Theorem 3: The collision-free latency of a Skeen-based
atomic multicast implementation A is equal to .4’s commit
latency D.

We next give a method for computing the failure-free
latency of a Skeen-based protocol A. Let C' be the clock
update latency of A, i.e., the maximum amount of time
elapsing between the events of multicasting a message m after
t and advancing the clock past GlobalTS[m] at the leader of
some group in dest(m). Consider an application message m
that was multicast at time ¢; > ¢’ and let p; be the leader of
a group g € dest(m). By Lemma 1, there exist times ¢. > ¢;
and to > t. such that p; advances its clock past Global TS[m]
at t. and commits m at ¢to. The delivery of message m can be
delayed past its commit time only by a conflicting concurrent
message multicast after ¢. Consider such a message m’ and
let ¢; be the time at which it commits at p; (which exists
by Lemma 1). If p; receives MULTICAST(m') after ¢, then
at the time m is committed, LocalTS[m'] > GlobalTS[m],
and therefore, p; does not need to wait until m’ is committed
to deliver m. Suppose now that p; receives MULTICAST(m’)
before t., and let ¢} be the time when multicast(m’) occurs.
If ¢§ < t, then by the choice of ', m’ is committed at p;
at time to > t’, and therefore, will not be obstructing the
delivery of m. Otherwise, ¢, < t} + D, and therefore, t} is
maximised if ¢} is arbitrarily close to t.. We thus have t; <
t.+D < t;+C+D. Hence, at the latest m is delivered at p; at

max{ty, t;+C+D} < max{t;+D,t;+C+D} = t;+C+D.
Then Theorem 3 implies

Theorem 4: The failure-free latency FFL of a Skeen-based
atomic multicast implementation A4 is FFL = C'+ CFL, where
C is the clock update latency of .4, and CFL is its collision-
free latency.

The commit latency of our white-box protocol is 34, corre-
sponding to the sequence of messages MULTICAST, ACCEPT,
ACCEPT_ACK. In contrast, its clock update latency is 24,
corresponding to the messages MULTICAST and ACCEPT (see
line 14 of Figure 4). Hence, Theorems 3 and 4 imply

Theorem 5: The collision-free latency of the white-box
protocol in Figure 4 is 34, and its failure-free latency is 56.

Since in our protocol followers deliver an application message
only after receiving a DELIVER message from their leader, the
maximum time to deliver a message at followers is 44 in a
collision-free run and 64 in a failure-free one.

In contrast to the white-box protocol, the naive fault-tolerant
version of Skeen’s protocol from §IV has the commit latency
of 66, which by Theorem 3 equals its collision-free latency.
In this protocol a leader advances its clock past a message’s
global timestamp only after completing the corresponding
consensus call, resulting in the clock update latency of 6.
Hence, by Theorem 4, the failure-free latency of fault-tolerant
Skeen’s protocol is 126.

VI. EXPERIMENTAL EVALUATION

We have implemented our multicast protocol in C using the
libevent library for communication [1]. Our implementation
is available at [2]. In addition to the protocol described in §IV,
the implementation includes a mechanism to garbage collect
delivered messages. In this section we experimentally compare
our protocol with the naive fault-tolerant version of Skeen’s we
described in §IV [17] and a state-of-the-art FastCast protocol
by Coelho et al. [10]. We use open-source implementations of
these protocols by Coelho et al. [3], also implemented in C
and using libevent.

FastCast. We first briefly review the FastCast protocol. This
protocol optimises fault-tolerant Skeen’s by using speculative
execution, while still using consensus as a black box. Like in
Skeen’s protocol, upon receiving an application message, the
Paxos leader of a group issues a local timestamp based on
its local clock and invokes consensus to persist it. However,
the leader also immediately sends the local timestamp to
the leaders of the other destination groups, without waiting
for consensus to finish. The leaders then speculatively act
on these timestamps like in Skeen’s, computing the global
timestamp as their maximum, advancing their clocks in line
with it and invoking consensus to persist these actions. Once
the consensus on the local timestamps is reached, the leaders
exchange messages confirming this. By the time a leader
receives these messages, it may have already done all of
the work necessary to act on the local timestamps, and can

10

commit the corresponding application message at once. Using
the method in §V, we can show that FastCast’s collision-free
and failure-free latencies are 46 and 86, respectively.

Local-area network. We first benchmark the protocols in
a local-area network (LAN) using the CloudLab infrastruc-
ture [4]. We consider 10 groups, each with 3 replicas, residing
on 30 machines. A varying numbers of client processes
residing on 10 separate machines initiate multicasts of 20-
byte messages in a closed loop. We use machines with 10-core
Xeon E5-2640 processors and 64GB of memory, connected by
2GB network links with around 0.1ms round-trip time.

We follow the evaluation methodology similar to the one
previously used to benchmark FastCast [10]. In Figure 7 we
show the average latency and throughput in 3-minute long
runs as a function of the number of clients and the number
of destination groups these clients multicast to. Additional
graphs for other numbers of destination groups are provided
in [18, §B]. All protocols we consider are CPU-bound in this
experiment, reaching 100% utilization when saturated.

As is evident from Figure 7, our protocol consistently out-
performs FastCast and Skeen both in latency and in through-
put. For example, at 1000 clients our protocol outperforms
FastCast by 1.2-3.5x, depending on the number of destination
groups, and by 2.15x on average. Note that in LAN, Fast-
Cast generally performs slightly worse than Skeen. This is
consistent with the results in [10] and is due to the overhead
of introduced by its parallel execution paths: this protocol is
more suited for a wide-area network.

Wide-area network. We next benchmark the protocols in
a wide-area network (WAN). We again consider 10 groups,
which are replicated across 3 data centres on the Google Cloud
Platform. Each group has a replica in each data centre, so
that a single data centre contains a complete copy of the data
managed by the system. This setting is typical for modern
wide-area deployments [11]. The data centres are Oregon (R1),
North Virginia (R2) and England (R3), and average round-
trip times between them are 60ms (R1++R2), 75ms (R2++R3)
and 130ms (R1<>R3). We use 30 machines with 2 vCPUs
and 7.5GB of memory for multicast group members, and 3
machines per datacentre with 8 vCPUs and 30GB of memory
to generate client load.

In Figure 7 we show the performance of all protocols in
this environment (additional graphs are provided in [18, §B]).
Our protocol again outperforms both FastCast and Skeen.
For example, at 8000 clients it outperforms FastCast on both
latency and throughput by 1.1-3.1x, depending on the number
of destination groups, and by 2x on average.

Recovery. We have also benchmarked the performance of
recovery in the above WAN environment. In this experiment
6000 client threads multicast messages to subsets of 4 out
of 10 groups, and the leader of one of the groups crashes. It
takes 6 sec for the affected group to recover: 2.5 sec for a new
leader to get established (i.e., switch to the LEADER state), and

Latency [msec]

Latency [msec]

E 2 destination groups E 4 destination groups E 8 destination groups

n _d1Q00 o _si,.1000 2 o —n—et000

5 500 7 " —e— FastCast w 100 I 099 n 3 "

Q Q [

2 400 - Skeen o go / o

1] 1] m

7 ./ —=— WbCast @ s 1000, @ " .100,0

2 300 2 60 x @

£ / £ 00| & a “—*""000 |
% 200 . 1000 = 40 e = — 1000
5 =000~ 5 a 5 10 ’

2 100 =T 2 20 a

< T S / < /

2 o g . 2

2 e g 0

E 0 2 4 6 E 0 5 10 15 20 £ 0 20 40 60

Latency [msec]

Fig. 7. Performance of multicast protocols in LAN with increasing numbers of clients: FastCast, fault-tolerant Skeen and our protocol (WbCast). In each
experiment clients multicast messages to a fixed number of groups. For reference, we mark the points corresponding to 1000 clients.

Latency [msec]

Latency [msec]

E 2 destination groups E 4 destination groups E 8 destination groups
250 = 9 100 5 2 3 _=0000
o 200 '|£ —e— FastCast v o Z8000 o - 46'/./.
o 13 Skeen o 7 o 00
2 20000 —=— WhbCast a ! a
o 150 [o 60 J. g 20 12000
€ . £ e £ .
v | 7 4 - 0 x
X 100 a X 40 220000] #2000
= | .2/09‘(19__.‘ . f 0 LA e—s . = 10 s o
2 s0 i 0" 2 20 000 o7 2
e '1/.4000 e : 2 .{/. g a
(=2 . o (=2}
d1I—T
g © g © 2 g o A4
.‘E 100 200 300 400 }'E 200 400 600 800 |‘E 250 500 750 1000 1250

Latency [msec]

Fig. 8. Performance of multicast protocols in WAN with increasing numbers of clients: FastCast, fault-tolerant Skeen and our protocol (WbCast). In each
experiment clients multicast messages to a fixed number of groups. For reference, we mark the points corresponding to certain numbers of clients.

3.5 sec for the new leader to clear out the messages whose
processing was interrupted by the crash. We give a detailed
graph of the performance in the experiment in [18, §B].

VII. RELATED WORK

Genuine atomic multicast is often implemented using a
fault-tolerant version of Skeen’s protocol [17, 31], which
has the collision-free latency of 66. Early alternatives had
asymptotically worse time complexity, e.g., proportional to the
number of destination groups [14]. As this is unsatisfactory,
researchers have been looking for protocols with lower latency.
Rodrigues et al. [29] proposed a protocol that has the collision-
free latency of 50. More recently, Coelho et al. [10] proposed
the FastCast protocol that further lowers it to 44, which we
discussed in detail in §VI. In comparison to this protocol,
ours avoids using separate consensus calls to replicate a local
timestamp and to advance the clock above a global timestamp,
resulting in collision-free latency of 3. It also boasts a lower
failure-free latency of just 59, thus reducing the 2x latency
degradation caused by concurrent messages in existing atomic
multicast implementations.

Our experimental results demonstrate that minimising la-
tency is not only of theoretical interest, but enables superior
performance in practice. The above protocols also used con-
sensus as a black-box, whereas take a different approach, un-
packing Paxos and weaving it together with Skeen’s protocol.

11

In this paper we assumed that each group has enough
correct processes to function normally. Researchers have also
investigated atomic multicast protocols that can operate when
a whole group crashes [32]. We also assumed that process
failures are crash-stop, rather than Byzantine [9]. We leave
handling these more challenging cases for future work.

Another primitive whose fault-tolerance presents similar
challenges to atomic multicast is atomic commit, which allows
several process groups to reach a decision on whether a
database transaction should be committed or aborted. A naive
fault-tolerant solution to this problem layers the classical
two-phase commit protocol over Paxos [11]. There have
been several alternative proposals that reduce the latency by
developing a single coherent protocol, in the spirit of this
work [8, 22, 35]. In comparison to these proposals, we handle
the more challenging problem of atomic multicast, where
process groups need to agree on a total ordering of application
messages rather than on a binary per-transaction decision.
This required us to develop new techniques for replicating
operations on logical clocks in a latency-conscious way.

Acknowledgements. We thank our shepherd, José Orlando
Pereira, as well as Manuel Bravo, Thanh Hai Tran and Pierre
Sutra for helpful comments and discussions. We also thank
Paulo Coelho and Fernando Pedone for discussions about their
FastCast protocol. Alexey Gotsman was supported by an ERC
grant RACCOON.

[1]
[2]
[3]
[4]
[5]

[6]

[7]
[8]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[28]

REFERENCES

https://libevent.org/.
https://github.com/imdea-software/atomic-multicast.
https://bitbucket.org/paulo_coelho/libmcast.

https://www.cloudlab.us/.

M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable
leader election. In International Conference on Distributed Computing
(DISC), 2001.

T. Ahmed-Nacer, P. Sutra, and D. Conan. The convoy effect in atomic
multicast. In Symposium on Reliable Distributed Systems Workshops
(SRDSW), 2016.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2), Mar. 1996.

G. Chockler and A. Gotsman. Multi-shot distributed transaction commit.
In International Symposium on Distributed Computing (DISC), 2018.
P. R. Coelho, T. C. Junior, A. Bessani, F. L. Dotti, and F. Pedone.
Byzantine fault-tolerant atomic multicast. In International Conference
on Dependable Systems and Networks (DSN), 2018.

P. R. Coelho, N. Schiper, and F. Pedone. Fast atomic multicast. In
International Conference on Dependable Systems and Networks (DSN),
2017.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford. Spanner: Google’s globally-distributed database. In
Symposium on Operating Systems Design and Implementation (OSDI),
2012.

J. A. Cowling and B. Liskov. Granola: Low-overhead distributed
transaction coordination. In USENIX Annual Technical Conference
(USENIX ATC), 2012.

X. Défago, A. Schiper, and P. Urban. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4), 2004.
C. Delporte-Gallet and H. Fauconnier. Fault-tolerant genuine atomic
multicast to multiple groups. In International Conference on Principles
of Distributed Systems (OPODIS), 2000.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2), 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2), 1985.
U. Fritzke Jr., P. Ingels, A. Mostéfaoui, and M. Raynal. Consensus-
based fault-tolerant total order multicast. IEEE Trans. Parallel Distrib.
Syst., 12(2), 2001.

A. Gotsman, A. Lefort, and G. Chockler. White-box atomic multicast
(extended version). arXiv CoRR, 1904.07171, 2019. Available from
https://arxiv.org/abs/1904.07171.

B. M. Oki and B. H. Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems.
In Symposium on Principles of Distributed Computing (PODC), 1988.

12

[19]

[20]

(21]

(22]

(23]
[24]

[25]

[26]

[27]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

R. Guerraoui and A. Schiper. Genuine atomic multicast in asynchronous
distributed systems. Theor. Comput. Sci., 254(1-2), 2001.

V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Cornell University,
1994.

F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance
broadcast for primary-backup systems. In International Conference on
Dependable Systems and Networks (DSN), 2011.

T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC:
Multi-data center consistency. In European Conference on Computer
Systems (EuroSys), 2013.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), 1978.

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2),
1998.

M. Larrea, A. Fernandez, and S. Arévalo. Optimal implementation of
the weakest failure detector for solving consensus. In Symposium on
Reliable Distributed Systems (SRDS), 2000.

M. Larrea, A. Fernandez, and S. Arevalo. On the implementation of
unreliable failure detectors in partially synchronous systems. IEEE
Trans. Comput., 53(7), 2004.

J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J. Abadi, J. Aspnes,
S. Sen, and M. Balakrishnan. The FuzzylLog: A partially ordered shared
log. In Symposium on Operating Systems Design and Implementation
(0OSDI), 2018.

L. E. T. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic
multicast. In International Conference On Computer Communications
and Networks (ICCCN), 1998.

M. Saeida Ardekani, P. Sutra, and M. Shapiro. Non-monotonic snapshot
isolation: Scalable and strong consistency for geo-replicated transac-
tional systems. In Symposium on Reliable Distributed Systems (SRDS),
2013.

N. Schiper and F. Pedone. On the inherent cost of atomic broadcast
and multicast in wide area networks. In International Conference on
Distributed Computing and Networking (ICDCN), 2008.

N. Schiper and F. Pedone. Solving atomic multicast when groups
crash. In International Conference on Principles of Distributed Systems
(OPODIS), 2008.

N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine partial replication
in wide area networks. In Symposium on Reliable Distributed Systems
(SRDS), 2010.

F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4), 1990.

I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports. Building consistent transactions with inconsistent replication. In
Symposium on Operating Systems Principles (SOSP), 2015

