
Distrib. Comput. (2005) 18(1): 73–84
DOI 10.1007/s00446-005-0123-x

SPECIAL ISSUE PODC

Gregory Chockler · Dahlia Malkhi

Active Disk Paxos with infinitely many processes

Received: October 2002 / Revised: June 2003 / Accepted: September 2004 / Published online: 7 April 2005
C© Springer-Verlag 2005

Abstract We present an improvement to the Disk Paxos
protocol by Gafni and Lamport which utilizes extended
functionality and flexibility provided by Active Disks and
supports unmediated concurrent data access by an unlimited
number of processes. The solution facilitates coordina-
tion by an infinite number of clients using finite shared
memory. It is based on a collection of read-modify-write
objects with faults, that emulate a new, reliable shared
memory abstraction called a ranked register. The required
read-modify-write objects are readily available in Active
Disks and in Object Storage Device controllers, making our
solution suitable for state-of-the-art Storage Area Network
(SAN) environments.

Keywords Shared memory · Consensus · Paxos · Infinitely
many processes · Non-responsive object faults

1 Introduction

In this paper we present a solution for universal service
replication using a data-centric approach. In this approach,
a highly available service is implemented by a replicated
set of servers, a threshold of which may be faulty. Each
server is responsible solely for implementing certain ob-
jects, e.g., a single shared register, that is accessible by
any number of clients. Our paradigm provides for coor-
dination and information sharing among transient clients,
possibly numerous, through the group of servers. It does
not require servers to interact among themselves, and it
avoids the complexity of failure monitoring and reconfig-

A preliminary version of this work appears in Proceedings of the 21st
ACM Symposium on Principles of Distributed Computing (PODC
’02), August 2002.

G. Chockler · D. Malkhi (B)
MIT Computer Science and Artificial Intelligence Laboratory, The
Stata Center, Building 32, 32 Vassar St., 32-G696, Cambridge, MA
02139, USA
E-mail: grishac@csail.mit.edu, dalia@cs.huji.ac.il

uration which is manifested, e.g., in group communication
middlewares [12, 46].

The data-centric paradigm also faithfully reflects recent
advances in hardware technology that have made possible
a new approach for storage sharing, in which clients access
disks directly over a storage area network (SAN). In a SAN,
disks are directly attached to high speed networks that are
accessible to clients. The clients access raw disk data, which
is mediated by disk controllers with limited memory and
CPU capabilities. Clients run file system services and name
servers on top of raw I/O. Since clients (or a group of des-
ignated SAN servers) need to coordinate and secure their
accesses to disks, they need to implement distributed access
control and locking for the disks. However, once a client ob-
tains access to a file, it accesses data directly through the
SAN, thus eliminating the slowdown bottleneck at the file
system server. IBM’s Storage Tank [8] is an example of a
commercially available SAN system that solves many of
the coordination, sharing and security issues involved with
SANs (see Sect. 2 for more examples). In this paper, we
tackle the issue of scaling the number of clients that are
served by a SAN.

From here on, we refer to shared storage units in our
data-centric system simply as objects. As in many other dis-
tributed settings, a fundamental enabler in this environment
for clients to coordinate their actions is an agreement pro-
tocol. It is well known that in order to solve agreement in a
non-blocking manner three phases are needed [48, 49]. This
leads to the usage of the Paxos protocol [18, 34, 35, 37] and
its variants, as is done, e.g., in Petal [38] and Frangipani [51].
Briefly, the Paxos protocol is a three-phase commit proto-
col that uses the 1st phase to determine a proposition value,
the 2nd phase to fix a decision value, and the 3rd phase to
commit to it. The Paxos protocol was recently adapted for
utilization in the shared-memory model in the Disk Paxos
protocol [23]. In this work we provide several important con-
tributions that enhance this line of research:

• We provide an adaptation of Paxos that supports infinitely
many clients;

• The memory complexity of our solution is constant;

74 G. Chockler, D. Malkhi

• Our construction makes use of a modular building block,
called a ranked register, that promotes understanding and
analysis of Paxos and of general coordination in dis-
tributed systems;

• Both our agreement protocol and our atomic object emula-
tion are built directly over the ranked register abstraction,
providing for each an efficient one-tier implementation. In
contrast, most atomic object emulation algorithms found
in the literature utilize the Consensus object as a building
block.

Of the above contributions, the most tangible one is the
extension to support infinitely many clients. Both the origi-
nal Paxos protocol and its Disk variant are geared toward a
fixed and known number of clients. In particular, in Disk
Paxos, each client must use a pre-designated memory to
write values, and must read the values written by all other
potential clients. Consequently, adding new clients to the
system is a costly operation that involves real-time locking
[23]. Also, the complexity of memory (disk) operations is
linear in the number of clients.

In contrast, our solution is ignorant of the number of par-
ticipating clients and their identities. It builds on a strength-
ening of the shared memory model. Our use of strong mem-
ory objects is justified by the impossibility result of Sect. 7,
that shows that even in failure-free runs, finite read/write
memory is insufficient for solving agreement among in-
finitely many processes.1 Hence, to provide a solution
which is realistic in practice, we employ stronger memory
objects.

Note that the strengthened memory model is justified in
practice. First, servers may support arbitrarily complex ob-
ject semantics, and as for disks, this approach is motivated
by recent development in controller logic that enhances the
functionality of disks for SAN and provide for Active Disks,
capable of supporting stronger semantics objects (see, e.g.,
[25]). In particular, specialized functions that require spe-
cific semantics not normally provided by drives can be pro-
vided by remote functions on Active Disks. Examples in-
clude a read-modify-write operation, or an atomic create that
both creates a new file object and updates the corresponding
directory object. Such advanced operations are already used
for optimization of higher-level file systems such as NFS on
NASD [26].

The existence of strong shared memory objects does not
obviate the need for an agreement protocol. Admittedly, if
we had even one reliable read-modify-write object, we could
leverage coordination off it to solve agreement, as shown by
Herlihy [30]. However, objects stored by servers or disks
could become unavailable. Unfortunately, it is impossible to
use a collection of fail-prone read-modify-write objects to
emulate a reliable one [31]. Hence, our construction is nec-
essarily more involved. It should be noted that using a farm
of shared objects also has the benefit beyond high availabil-

1 Section 7 actually provides a stronger result, proving impossibil-
ity of constructing a different type of object than a consensus object.
By the universality of the consensus object [30], this a fortiori implies
impossibility of constructing agreement.

ity. Even in the case that disks are considered reliable, dis-
tributing client accesses among multiple objects prevents un-
necessary contention. Hence, our solution provides for both
high availability, and for load sharing among storage servers.

Our solution first breaks the Paxos protocol using an ab-
straction of a shared object called a ranked register, which
is driven by a recent deconstruction of Paxos by Boichat
et al. [6]. (We compare our ranked register abstraction with
the round-based register of [6] in Sect. 4.) Briefly, a ranked
register supports rr-read and rr-write operations that are both
parameterized by a rank whose values are taken from a to-
tally ordered set fixed in advance (e.g., the Paxos ballots
are integers). The main property of this object is that a
rr-readwith rank r1 is guaranteed to “see” any completed
rr-writewhose rank r2 satisfies r1 > r2. In order for this
property to be satisfied, some lower ranked rr-write opera-
tions that are invoked after a rr-read has returned must abort.
Armed with this abstract shared object, we show the follow-
ing two constructions:
1. We provide a simple implementation of Paxos-like agree-

ment and universal object emulation using the abstraction
of one reliable shared ranked register that supports in-
finitely many clients. Briefly, in these implementations a
participating client chooses a (unique) rank, rr-read s the
ranked register with it, and then writes the ranked regis-
ter either with the value it read (if exists) or with its own
input. (In case of universal object emulation, the agree-
ment value is the operation prefix, possibly extended by
the client’s input operation.) If the rr-write operation suc-
ceeds (i.e., it does not abort), then the process decides on
the written value. Else, it retries with a higher rank.

2. The reliable shared ranked register abstraction cannot
be supported for an unbounded number of clients us-
ing only finite read/write memory (proof is provided in
Sect. 7). Furthermore, no single fail-prone object may
implement it. Therefore, we provide an implementation
of a ranked register shared among an unbounded num-
ber of clients. The implementation employs a farm of
read-modify-write registers, of which a threshold may
become non-responsive. The fault tolerant emulation per-
forms each rr-read or rr-write operation on a majority of
the disks, and takes the maximally ranked result as the
response from an operation. The number of objects re-
quired for the emulation is determined only by the level
of desired fault tolerance, regardless of the number of
participating clients.
Our approach is readily implementable in a SAN with

Active Disks. To this extent, it may serve as an important
specification of the kind of functionality that is desired by
SAN clients and that disk manufacturers may choose to pro-
vide. Additionally, our approach faithfully represents an-
other realistic setting, the classic client-server model, with
a potentially very large and dynamic set of clients. This
is the setting for which scalable systems like the Fleet ob-
ject repository [42] were designed. We advocate the data-
centric approach in more detail in two recent position papers
[14, 41].

Active Disk Paxos with infinitely many processes 75

2 Related work

Our work deals with solving the Consensus problem [36],
one of the most fundamental problems in distributed
computing. Consensus is the building block for replication
paradigms such as state machine replication [50, 33], group
membership (see [12, 46] for survey), virtual synchrony [5],
atomic broadcast [11], total ordering of messages [22, 32],
etc. Consensus is known to be unsolvable in most real-
istic models such as asynchronous message passing sys-
tems [21] and asynchronous shared memory with read/write
registers [19, 30, 40] if even a single process can fail by
crashing. While it is usually straightforward to guarantee
the consistency of a consensus decision alone (safety), the
difficulty is in guaranteeing progress in face of uncertainty
regarding process failures. The usual approaches to circum-
venting Consensus impossibility include strengthening the
basic model by assuming different degrees of synchrony (see
e.g., [17, 19, 20]), augmenting the system with unreliable
failure detectors [11], and employing randomization (see a
survey in [16]). Specifically, our solution uses one of the
most widely deployed implementations of the state machine
replication [33, 50], the Paxos algorithm [18, 34, 35, 37].
At the core of Paxos is a consensus algorithm called Synod.
The Synod protocol deals with the Consensus impossibil-
ity by guaranteeing progress only when the system is stable
so that an accurate leader election is possible. This assump-
tion is equivalent to assuming the � failure detector of [10]
which was shown in [10] to be the weakest failure detector
that can be used to solve Consensus.

As shown below in Sect. 7 though, when an infinite
number of processes is present, even if they are all non-
faulty, agreement is impossible to achieve using only a finite
number of atomic read/write registers. Not surprisingly, the
Paxos protocol is in fact designed with built-in knowledge of
all of the participants. The focus of our work is on guaran-
teeing safety of the consensus decision in the presence of an
infinite number of processes. Other results in this model and
a classification based on levels of simultaneity can be found
in [24, 43]. As for liveness, we can use standard approaches
as above to circumvent impossibility, and we leave it outside
the scope of this work.

Our usage of shared-access SAN disks as shared mem-
ory is greatly influenced by the recent Disk Paxos protocol of
Gafni and Lamport [23]. In Disk Paxos, the protocol state is
replicated at network attached disks some of which can crash
or become inaccessible. The participating processes access
the state replicas directly over a SAN. Disk Paxos assumes
simple commodity disks which support only primitive read
and write operations. It supports a bounded and known num-
ber of clients, and uses disk memory proportional to their
number. In contrast, we stipulate Active Disks that are ca-
pable of serving higher semantics objects, which provide us
with the strength needed to guarantee safe decisions in face
of an unbounded number of clients. The amount of mem-
ory we utilize per disk is fixed regardless of the number of
participating clients.

The environment model that faithfully reflects our
setting is an asynchronous shared memory system where
processes interact by means of a finite collection of shared
objects some of which can be faulty [1, 31]. Similarly, the
Consensus protocol of Disk Paxos, called Disk Synod, is in
fact an implementation of Consensus in an asynchronous
shared memory system with atomic read/write registers
which can incur non-responsive crash failures. It should be
noted that in [31], Jayanty et al. prove that it is impossible
to implement wait-free Consensus in such an environment if
at most one shared object can stop responding forever. This
result holds regardless of the number, size and type of the
shared objects used by the implementation. Hence, merely
by stipulating stronger disks we would still be unable to
circumvent the impossibility. Nevertheless, we show that
the ranked register is sufficient for implementing non-fault-
tolerant Consensus with unbounded number of participants.
A remarkable feature of the ranked register is that it allows
for wait-free implementation in a shared memory system
with non-responsive crash faults and therefore, can be used
as a building block for implementing fault-tolerant Disk
Paxos with unbounded number of processes. As before, the
way to guarantee progress despite the impossibility result is
by augmenting the system with a leader election primitive
which is required to be eventually accurate in order for the
protocol to be live.

Our ranked register abstraction was largely inspired by
work of Boichat et al. [6] on deconstructing the Paxos proto-
col. This paper proposes a modular decomposition of Paxos
based on a simple shared memory register called round-
based register. Intuitively, both the round-based register and
the ranked register encapsulate the notion of Paxos ballots2

which are used by the protocol to ensure value consistency in
presence of concurrent updates. While being in line with the
general deconstruction idea of Boichat et al., our ranked reg-
ister nevertheless provides weaker guarantees and supports
a slightly different interface. A detailed comparison is pro-
vided in Sect. 4. A different deconstruction of the Paxos pro-
tocol is provided in [7]. This deconstruction employs a more
abstract shared-object definition, called � Register. The �

Register avoids referring to ranks (or rounds), and thus is a
higher level abstraction that does not directly include imple-
mentation details. On the other hand, as discussed in [7], the
� Register admits inefficient implementations. This is pre-
vented in the specification of our ranked register.

2.1 SAN technology

Our work was motivated in part by advances in storage tech-
nology and the SAN paradigm. A storage area network en-
ables cost-effective bandwidth scaling by allowing the data
to be transferred directly from network attached disks to
clients so that the file server bottleneck is eliminated. The
Network Attached Secure Disks (NASD) [25] of CMU is

2 Ballots roughly correspond to rounds and to ranks in the round-
based and the ranked register respectively.

76 G. Chockler, D. Malkhi

perhaps the most comprehensive joint academy–industry
project which laid the technological foundation of network
attached storage systems. NASD introduced the notion of
an object storage device (OSD) which is a network attached
disk that exports variable length “objects” instead of fixed
size blocks. This move was enabled by recent advances in
the Application Specific Integrated Circuit (ASIC) technol-
ogy that allows for integration sophisticated special-purpose
functionality into the disk controllers. The NASD project
also addresses other aspects of the network attached disk
technology such as file system support [26], security [27]
and network protocols [25].

Active Disks [2, 47] is a logical extension of the OSD
concept which allows arbitrary application code to be down-
loaded and executed on disks. One of the applications of the
active disks technology is enhancing disk functionality with
specialized methods, such as atomic read-modify-write, that
can be used for optimization and concurrency control of
higher-level file systems.

Issues concerned with data management in SAN-based
file systems, such as synchronization, fault tolerance and se-
curity, are investigated in [8] in the context of the IBM Stor-
age Tank project.

Other work which addresses scalability and perfor-
mance issues of network storage systems (not necessar-
ily concerned with network attached disks) include NSIC’s
Network-Attached Storage Device project [45], the Net-
station project [28] and the Swarm Scalable Storage Sys-
tem [29]. Petal [38] is a project to research highly scalable
block-level storage systems. Frangipani [51] is a scalable
distributed file system built using Petal.xFS: Serverless Net-
work File Service [4] attempts to provide low latency, high
bandwidth access to file system data by distributing the func-
tionality of the server (e.g., cache coherence, locating data,
and servicing disk requests) among the clients.

Concurrency control was identified as one of the crit-
ical issues in the network attached storage technology be-
cause of inherent lack of a central point of coordination [3].
The concurrency control in the Petal [38] virtual disk stor-
age system and the Frangipani [51] file system is achieved
using replicated lock servers which utilize Paxos for consis-
tency. Consequently, Disk Paxos is a natural candidate for
enabling lock management in network attached storage sys-
tems. In this paper we show that by enhancing network at-
tached disk functionality with two simple read-modify-write
operations, which are realistic to support with the OSD and
Active Disk technologies, it is possible both to adapt Disk
Paxos to support an unbounded number of clients and to re-
duce its communication cost.

3 System model

We consider an asynchronous shared memory system con-
sisting of a countable collection of client processes interact-
ing with each other by means of a finite collection of shared
objects. The processes are designated by numbers 1, 2,

Clients may fail by stopping (crashing). The implementation
should be wait-free in the sense that the progress of each
non-faulty client should not be prevented by other clients
concurrently accessing the memory as well as by failures
incurred by other clients. The shared memory objects them-
selves may be crash faulty. The model above is called in [31]
the non-responsive crash (NR-Crash) failure model, and we
shall use this name here-on.

According to [31], wait-free consensus is impossible in
such a setting. This result holds regardless of the number,
size and type of the shared objects used by the implementa-
tion. Therefore, similar to the Paxos approach, we overcome
this impossibility by augmenting the system with a leader
oracle. The oracle guarantees the eventual emergence of a
unique non-faulty leader, though when this happens is un-
known to the clients themselves.

The boolean failure detector oracle we employ, denoted
L, is as follows. Let Li denote the local instance of L at i ,
with a boolean isLeader() operation returning the current
value output by Li . Then, L is required to satisfy the follow-
ing property eventually:

Property 1 (Unique Leader) There exists a correct process i
such that every invocation of Li .isLeader() returns true, and
for each process j �= i , every invocation of L j .isLeader()
returns false.

4 The ranked register

Our Consensus and atomic object constructions (see Sect. 5)
employ a special type of shared memory register, called a
ranked register, which for now we assume is failure-free. In
Sect. 6, we show how to implement a fault tolerant ranked
register.

Intuitively, the ranked register encapsulates the notion of
ballots which are used by the Paxos protocol to ensure value
consistency in presence of concurrent updates. The idea of
modeling the Paxos protocol this way is due to [6]. How-
ever, while the ranked register interface bears similarities to
the round-based register of [6], its specification is weaker
than that of [6]. We discuss the differences below. The reg-
ister provides a clean isolation of the essential properties of
Paxos into a well-defined building block, thus simplifying
reasoning about the protocol behavior.

We now give a formal specification of the ranked regis-
ter. Let Ranks be a totally ordered set of ranks with a distin-
guished initial rank r0 such that for each r ∈ Ranks, r > r0;
and Vals be a set of values with a distinguished initial value
v0. We also consider the set of pairs denoted RVals which is
Ranks×Vals with selectors rank and value. A ranked register
is a multi-reader, multi-writer shared memory register with
two operations: rr-read(r)i by process i , r ∈ Ranks, whose
corresponding response is value(V)i , where V ∈ RVals.
And rr-write(V)i by process i , V ∈ RVals, whose reply is
either commiti or aborti . Note that in contrast to a standard
read/write register interface, both rr-read and rr-write op-
erations on a ranked register take a rank as an additional

Active Disk Paxos with infinitely many processes 77

argument; and its rr-write operation might abort, whereas
the write operation on a standard read/write register always
commits (i.e., returns ack).

In the following discussion we often say that a rr-read
operation R returns a value V meaning that the register
responds with value(V) in response to R. We also say
that a rr-write operation W commits (aborts) if the register
responds with commit (abort) in response to W .

For simplicity, we assume that each run starts with W0 =
rr-write(〈r0, ⊥〉) which commits. Furthermore, we will re-
strict our attention to runs in which invocations of rr-write
on a ranked register use unique ranks. More formally, we
will henceforth assume that all runs satisfy the following:

Definition 1 We say that a run satisfies rank uniqueness if
for every rank r ∈ Ranks, it there exists at most one v ∈ Vals
and one process i such that rr-write(〈r, v〉)i is invoked in the
run.

In practice, rank uniqueness can be easily ensured by
choosing ranks based on unique process identifier and a se-
quence number. The main reason we use this restriction is to
simplify establishing the correspondence between the val-
ues written with specific ranks and the values returned by
the rr-read operation.

We now give a formal specification of the ranked regis-
ter. We start by introducing the following definition:

Definition 2 We say that a rr-read operation R =
rr-read(r2)i sees a rr-write operation W = rr-write(〈r1, v〉) j
if R returns 〈r ′, v′〉 where r ′ ≥ r1.

The ranked register is required to satisfy the following three
properties:

Property 2 (Safety) Every rr-read operation returns a value
and rank that was written in some rr-write invocation. Ad-
ditionally, let W = rr-write(〈r1, v〉)i be a rr-write operation
that commits, and let R = rr-read(r2) j , such that r2 > r1.
Then R sees W .

Property 3 (Non-Triviality) If a rr-write operation W in-
voked with the rank r1 aborts, then there exists a rr-read
(rr-write) operation with rank r2 > r1 which is invoked be-
fore W returns.

Property 4 (Liveness) If an operation (rr-read or rr-write) is
invoked by a non-faulty process, then it eventually returns.

Allowing rr-write to abort sometimes is crucial for its
implementability. Suppose that a rr-read operation with rank
r returns a value written by a rr-write operation with a rank
r ′ < r . Later, when a subsequent rr-write with a rank r ′ <
r ′′ < r is invoked, it must abort due to this rr-read.

Also note that our ranked register specification is very
weak: In particular, it allows in some situations for rr-write
operation to commit even though there exists another previ-
ously committed rr-write with a higher rank. The reason for
that not being a problem stems from the way the ranked reg-
ister is used by the Consensus implementation in Sect. 5.1.

In particular, each process in our Consensus implementation
invokes rr-write only after it invokes rr-read with the same
rank and this rr-read returns. Thus, the ranked register Safety
property ensures that in every finite execution prefix, each
value written by a committed rr-write must be returned by
one of the rr-read operations with a higher rank if such exist.
Consequently, in each run of the Consensus implementation,
any rr-write operation, which is invoked after rr-read with a
higher rank has returned, would necessarily abort.

Our specification of ranked register is weaker compared
with the round-based register of [6]. The round-based reg-
ister uses notions of partial operation ordering in the defini-
tion of the write-commit property (“if write (k, v) commits,
and no subsequent write(k′, v′) with k′ ≥ k and v′ �= v
is invoked, then any read(k′′) that commits, commits with
v if k′′ > k”, stressed text added here for clarity). To
see that this definition is too strong, consider the follow-
ing scenario. Suppose that a write w1 = wri te(k1, v1) is
invoked and is still in progress when another write is in-
voked, w2 = wri te(k2, v2), with k1 > k2, v1 �= v2. In
this case, w2 may commit. However, a subsequent read may
“see” w1, and the value of w1 may be returned, contradic-
tory to the requirement. In fact, the distributed implemen-
tation of round-based register in [6] does not prevent this.
Moreover, it does not seem possible to prevent this in our
setting. Finally, we should note that just by dropping ‘sub-
sequent’ from the specification results in different problems.
It is our view that there is no easy way to form the ranked-
register specification using operation ordering, and hence,
the specification above is qualitatively different from that of
the round-based register.

5 Consensus and atomic object emulation

In this section we present the implementations of Consen-
sus and of an arbitrary typed atomic object (a universal con-
struction) based on the ranked register abstraction defined in
the previous section. The algorithms in this section use the
ranked register as a black box.

In addition to a shared ranked register, our algorithms
also employ atomic shared registers. It should be noted that
these objects can be implemented in our models in a similar
manner to the ranked-register implementation, and hence we
omit their explicit constructions.

5.1 Consensus using a ranked register

We now outline an agreement protocol which employs a
shared ranked register. The pseudocode of the Consensus
implementation is depicted in Fig. 1. Each process i iter-
ates through the following steps until the decision is reached:
First, i checks whether some process has decided and writ-
ten the agreement value into the decision register. If yes,
this value is returned. Otherwise, i calls a local procedure,
chooseRank which is assumed to output monotonically in-
creasing values r ∈ Ranks, and then waits until the output

78 G. Chockler, D. Malkhi

Fig. 1 Consensus using a ranked register

of Li becomes true. Once this happens, the local DECIDE
routine is invoked. It takes as arguments i’s initial value and
the chosen rank. It returns the agreement value or aborts.
The DECIDE routine is guaranteed to return an agreement
value at the latest when a non-faulty leader has been elected
and allowed to force a decision (i.e., Property 1 holds). We
now outline the correctness argument of the agreement algo-
rithm. Recall that W0 is an initialization rr-write operation,
assumed to commit at the start of any execution. Ignoring
this initialization, the next lemma shows that once a con-
sensus value commits, it remains fixed as the decision value
throughout the execution.

Lemma 1 For any finite execution α, let W1 =
rr.rr-write(〈r1, v1〉), W1 �= W0 be the lowest ranked rr-write
invocation which commits in α. Then, in any extension of α
in which W = rr.rr-write(〈r, v〉), r > r1, is invoked, v = v1.

Proof Our proof strategy is to build a chain of rr-write’s
from W1 to W , such that each W writes the value that it reads
from the preceding rr-write in the chain. We then show that
the same value is written in all of these rr-write’s by induc-
tion on the length of such chains.

Indeed, let R = rr.rr-read(r) be the rr-read correspond-
ing to W that is executed before W is invoked. By safety, R
returns the pair 〈r1, w1〉 or a higher ranking pair 〈rk, wk〉 that
was written in some Wk = rr-write(rk, wk). Since rk > r1,
again the corresponding rr.rr-read(rk) returns 〈r1, w1〉 or
a higher ranked written value. And so on. Eventually, we
obtain a unique chain W1, W2, . . . , Wk, W , such that for

each of W2, . . . , Wk, W , the corresponding rr-read returns
the value/rank pair written by the preceding rr-write in the
chain.

We now show by induction on the length k of the chain
that W writes v1. If k = 1, then R returns v1 and by the
agreement protocol W writes v1.

Otherwise, suppose for all chains of length < k it
holds that the last rr-write writes v1, and consider the chain
above of length k. For Wk , the (unique) chain from W1 is
W1, W2, . . . , Wk . By the induction hypothesis, Wk writes v1.
Hence, again R reads v1 and according to the protocol, W
writes v1. �

The following theorem immediately follows from Lemma 1
(and the protocol):

Theorem 1 The algorithm in Fig. 1 guarantees that for any
two processes i and j such that propose(v)i returns V
and propose(v′) j returns V ′, V = V ′; and V is the argu-
ment of some propose operation which was invoked in the
run.

Next, we show liveness.

Theorem 2 If some correct process invokes propose, then
eventually all correct processes decide.

Proof First note that the regular register semantics imply
that once some process decides and completes its write op-
eration to the decision register, all other process will eventu-
ally read this value and decide.

Otherwise, by definition of L, there exists time T such
that Property 1 holds at all times t > T . Assume that
decision is not written before T . Since by the theorem pre-
condition, at least one correct process is taking steps after
T , Property 1 implies that there exists a correct process i
such that at all times t > T , Li .isLeader() returns true,
and for all j �= i , L j .isLeader() returns false. By non-
triviality of the ranked register, rr-write is guaranteed to
commit once it is called with a rank which is the highest
among all the ranks ever chosen by any process in the sys-
tem. Since chooseRank returns monotonically increasing
ranks, such a rank is eventually returned by chooseRank
at i . Once, rr-write commits, i writes the committed value
to the decision register. Once this happens, all the correct
processes eventually decide. �

5.2 Atomic object emulation using a ranked register

Ultimately, the purpose of forming coordination is to sup-
port data sharing among clients consistently. Many protocols
leverage atomic data emulation off of the consensus build-
ing block we already have. In this section we show how a
ranked register can be used directly to construct an atomic
object of an arbitrary type T . This yields a one-tier, practi-
cal construction.

An object type T is a tuple 〈∑, O P, Res, G〉, where
∑

is a set of the type states, O P is a set of operations, Res is
a set of responses, and G is a sequential specification of T

Active Disk Paxos with infinitely many processes 79

Fig. 2 Emulating an arbitrary
atomic object using a ranked reg-
ister

which maps the pairs in O P×∑
to the pairs in Res×∑

. Let
σ, σ ′ ∈ ∑

, op ∈ O P and res ∈ Res. We say that 〈σ ′, res〉
is the result of applying op to σ iff 〈σ ′, res〉 = G(σ, op).

The atomic object emulation pseudocode appears in
Fig. 2. The operation submit takes as a parameter an
operation to execute, and returns the operation response.
For simplicity, we assume that each op ∈ O P can be
submitted at most once throughout the run. In practice,
this requirement can be easily enforced by assigning each
newly submitted operation a unique id which, e.g., can
be the pair consisting of the process id and a counter. We
assume that the sequential specification of T , G as well as
the initial state σ0 of the type T instance being emulated
is known to all the participating processes. As before, we
assume that the chooseRank routine returns unique and
monotonically increasing ranks. The ranked register is
used to build a common invocation sequence which, when
applied to the object states starting from σ0, ensures that the
returned responses are consistent with G. The set of values
which are written to and read from the ranked register are
taken from the set of all sequences over the set O P × Res.
We denote by APPLY(seq, op), where seq is a sequence
over O P × Res and op ∈ O P , the sequence obtained
by appending 〈op, res〉 to seq , where res is the result of
applying op to the final state reached when applying the
operations in seq from the initial state σ0.

We now set off to show the emulation algorithm correct.
The next lemma is similar to Lemma 1 of the Consensus
correctness argument:

Lemma 2 For any execution α, let W0 = rr-write(〈π0, r0〉)
be a rr-write operation which commits. Then, in any exten-
sion of α in which W = rr-write(〈π, r〉), r > r0 is invoked,
π0 is a prefix of π .

Proof By the same argument as in the proof of Lemma 1,
there exists a unique chain W0, W1, . . . , Wk, W , such that
for each W1, . . . , Wk, W , the corresponding rr-read returns
the prefix/rank pair written by the preceding rr-write in the
chain.

We now show by induction on the length k of the chain
that π is an extension of π0. If k = 0, then the rr-read pre-
ceding W reads π0, and by the ORDER routine, W either
writes π0, or appends an operation/response pair to π0, and
then writes the resulting sequence.

Otherwise, suppose for all chains of length l < k, it
holds the last rr-write writes a sequence πl which extends
π0, and consider the chain above the length k. For Wk , the
(unique) chain from W0 is W0, W1, . . . , Wk . By the induc-
tion hypothesis, Wk writes a sequence πk which extends π0.
Hence, again the rr-read operation preceding W reads πk ,
and according to the ORDER code, W writes a sequence π
which is either equal or extends the sequence πk . �

Theorem 3 (Atomicity) The algorithm in Fig. 2 emulates
an atomic object of type T .

Proof By Lemma 2, all the operation prefixes written by
the committed rr-write invocations form a sequence π̄ =
π0, π1, . . . , πk such that (1) π0 = 〈〉; and for each i > 0:
(a) πi either equal to or extends πi−1; and (b) the rank of

80 G. Chockler, D. Malkhi

rr-write which wrote πi is higher than the rank of rr-write
which wrote πi−1. Since according to the algorithm, the op-
eration result is obtained by applying all the operations in a
committed prefix to the initial object state, the returned re-
sults are consistent with π̄ . Moreover, since no lower ranked
rr-write can commit if it is invoked after a higher ranked
rr-write has committed, π̄ preserves the temporal order of
non-concurrent rr-write operations. �

Finally, the next theorem asserts the liveness:

Theorem 4 (Liveness) If a correct process i invokes
submit(op)i , then there exists a process j such that
submit(op) j eventually returns.

Proof The proof is based on the same argument as the proof
of Theorem 2. �

The liveness property above is notably weak. In partic-
ular, it does not guarantee that every submit operation ter-
minates, but rather, provides a global guarantee of progress;
singular operations could in principle be starved. The usual
approach to transform this guarantee into a proper liveness
provision is to establish a set-object into which pending op-
erations are thrown. Each leader should then help set an or-
der on any operation in the set, and thus, eventually all op-
erations are ordered. We omit the details of this mechanism
for brevity.

6 Implementing a ranked register

In this section, we deal with the problem of implementing
a wait-free shared ranked register. First, in Sect. 6.1, we
specify how a single ranked register is implemented from

Fig. 3 An implementation of a
single ranked register

a read-modify-write object. Second, in Sect. 6.2, we present
a wait-free self-construction of the ranked register for the
NR-Crash failure model.

6.1 A single ranked register

Our shared memory model assumes the existence of atomic
shared objects such as read-modify-write registers. By this,
we capture the assumption that each “disk” is capable of ac-
cepting from clients subroutines with I/O operations for exe-
cution, and indivisibly performing them. The disk itself may
become unavailable, and hence, the shared memory objects
it provides may suffer non-responsive crash faults. For this
reason, no single read-modify-write object suffices for solv-
ing agreement on its own (as in Herlihy’s consensus hierar-
chy, see [30]). Rather, we first use each read-modify-write
object to construct a ranked-register (which may also in-
cur a non-responsive crash fault), and then, use a collection
of ranked registers to construct a non-faulty ranked-register,
from which agreement is built.

Let X = (Ranks × Ranks × V als) ∪ {〈r0, r0,⊥〉} with
selectors r R, wR and val. The implementation of a ranked
register uses a single read-modify-write shared object x ∈ X
of unbounded size whose field x .r R holds the maximum
rank with which a rr-read operation has been invoked; x .wR
holds the maximum rank with which a rr-write operation has
been invoked; and x .val holds the current register value. The
implementation pseudocode is depicted in Fig. 3. It is quite
straight-forward: read returns the currrent value of the regis-
ter, and records its own rank. Write checks wether a higher
ranking read was invoked, aborts if yes, and if not, modifies
the value of the register and records its own rank. For clarity,
invocations of read-modify-write operations rmw-read and

Active Disk Paxos with infinitely many processes 81

rmw-wri te are enclosed within “lock” and “unlock” state-
ments, to indicate that they execute indivisibly.

Lemma 3 The pseudocode in Fig. 3 satisfies Safety.

Proof That a rr-read operation can only return a valid value
that was actually used in a rr-write operation or 〈r0, ⊥〉
is obvious from the code. Now consider a rr-write opera-
tion W1 = rr-write(〈r1, v1〉)i that commits and let R2 =
rr-read(r2) j , r2 > r1 be a rr-read operation which returns
〈r, v〉. Let mw1 denote the rmw-wri te() procedure called
from within W1 and mr2 the rmw-read() procedure in-
voked within R2. Since the read-modify-write semantics of
x ensures sequential access, mr2 must be sequenced after
mw1. For otherwise, x .r R ≥ r2 > r1 so that mw1 returns
nack and W1 aborts. Thus, R2 returns the tuple written by
a rmw-wri te procedure mw′ which is either mw1 or some
rmw-wri te procedure sequenced after mw1. Let r ′, v′ be the
arguments passed to mw′. Then, r ′ ≥ r1, since otherwise,
x .wR ≥ r1 > r ′ so that the value of x remains unchanged.
Moreover, by the rank-uniqueness assumption, r ′ = r1 im-
plies that mw′ = mw1. Therefore, 〈r, v〉 = 〈r ′, v′〉 and ei-
ther 〈r ′, v′〉 = 〈r1, v1〉, or r ′ > r1 as needed. �

Lemma 4 The pseudocode in Fig. 3 satisfies Non-Triviality.

Proof According to the pseudocode, a rr-write operation W
with rank r aborts if the rmw-wri te() procedure w called
within W returns nack. This happens if w sees x .r R > r or
x .wR ≥ r . This is only possible if some rmw-wri te() pro-
cedure with rank r ′ ≥ r , or a rmw-read() procedure with
rank r ′ > r is sequenced before w. This could happen only
as a result of some previously returned or concurrent rr-read

Fig. 4 A fault-tolerant ranked register construction
for NR-Crash

(rr-write) with rank r ′ > r (r ′ ≥ r). By the rank-uniqueness
assumption, no two rr-write operations are ever invoked with
the same rank. Therefore, W can abort only due to some pre-
viously returned or concurrent rr-read or rr-write with rank
r ′ > r as needed. �

Lemma 5 The pseudocode in Fig. 3 satisfies Liveness.

Proof Liveness trivially holds since both rr-read and
rr-write always return something (i.e., the implementation
is wait-free). �

We have proven the following theorem:

Theorem 5 The pseudocode in Fig. 3 is an implementation
of a ranked register.

6.2 A fault-tolerant construction of a ranked register
for NR-Crash

In this section we present a wait-free implementation of
a ranked register from ranked registers that may experi-
ence non-responsive crash faults. The register supports an
unbounded number of clients. Our construction utilizes n
shared ranked registers up to
(n − 1)/2� of which can in-
cur non-responsive crash. The pseudocode appears in Fig. 4.
This construction is also straight-forward: Reading and writ-
ing are both done at a majority of the ranked registers. As for
rr-write, if any of the ranked registers which are accessed re-
turns abort, the operation aborts.

Lemma 6 The pseudocode in Fig. 4 satisfies Safety.

Proof That a rr-read operation can only return a valid value
that was actually used in a rr-write operation or 〈r0,⊥〉

82 G. Chockler, D. Malkhi

is obvious from the code. Now consider a rr-write opera-
tion W1 = rr-write(〈r1, v1〉)i that commits and let R2 =
rr-read(r2) j , r2 > r1 be a rr-read operation which returns
〈r, v〉. Since both W1 and R2 access at least �(n + 1)/2

ranked registers, there exists a single register rrk accessed
by both W1 and R2. Moreover, the Safety of rrk ensures
that the tuple 〈r ′, v′〉 returned by rrk .rr-read(r2)i must sat-
isfy r ′ ≥ r1. Since R2 returns the tuple with maximum rank,
r ≥ r ′ ≥ r1 as needed. �

Lemma 7 The pseudocode in Fig. 4 satisfies Non-Triviality.

Proof According to the protocol, a rr-write operation
W = rr-write(〈r, v〉)i aborts if there exists k such that
rrk .rr-write(〈r, v〉)i aborts. By the Non-Triviality of rrk , this
can happen only if some invocation rrk .rr-write(〈r ′, v′〉) j
(rrk .rr-read(r ′) j) with r ′ > r occur before or concurrently
to rrk .rr-write(〈r, v〉)i . This can only be the case if some
rr-write or rr-read operation with rank r ′ has been completed
before or is concurrent to W . �

Lemma 8 The pseudocode in Fig. 4 satisfies Liveness.

Proof Each rr-write or rr-read operation is guaranteed to ter-
minate since at most �(n + 1)/2
 ranked registers are re-
quired to respond, no more than
(n − 1)/2� ranked reg-
isters can incur non-responsive crash, and each individual
non-faulty ranked register is wait-free. �

We have proven the following theorem:

Theorem 6 The pseudocode in Fig. 4 is a wait-free con-
struction of a ranked register out of n ranked registers such
that at most
(n − 1)/2� can incur non-responsive crash
faults.

7 Impossibility of constructing ranked-register
from read/write registers

Our construction of a fault tolerant ranked-register requires
strong (read-modify-write) base objects. In this section we
briefly address the natural question of whether this strong
memory model is necessary. We prove that a ranked register
cannot be implemented using a bounded number of atomic
read/write registers (of unbounded size) in the presence of
unbounded number of clients, even if clients are failure-free.
The main result of this section is expressed in Theorem 7 be-
low. It shows that any algorithm that implements the ranked
register specification in a shared memory system with n pro-
cesses must use at least n atomic read/write registers. It then
follows that if the number of processes is not bounded, the
number of shared read/write registers needed to implement
the ranked register is also unbounded.

In order to prove this result, we utilize the technique
of [9] to prove lower bounds on the number of atomic reg-
isters needed to solve mutual exclusion. Though the proof

technique below is standard, it should be noted that there is
no known direct reduction from mutual exclusion to a ranked
register, and hence, the results of [9] do not apply directly to
the impossibility of constructing a ranked register. In fact,
we conjecture that the ranked register is strictly weaker than
the mutual exclusion problem, and hence, that no such re-
duction is possible.

We start with some definitions. We say that two system
states s and s′ are indistinguishable to process i , denoted
s

i∼ s′, if the state of process i and the values of all shared
variables are the same in s and s′. We say that process i
covers shared variable x in system state s if i is about to
write on x in s.

Lemma 9 Suppose that there exists an algorithm that
implements a ranked register using only shared atomic
read/write registers. Let s be a reachable system state in
which r is the highest rank that appears in any operation.
Then a rr-write operation W = rr-write(〈r ′, v′〉)i by process
i with r ′ > r must write some shared variable which is not
covered in s.

Proof Assume in contradiction that no non-covered shared
variable is written by i in the course of W . We construct a
system execution which violates the Safety property of the
ranked register as follows:

We first run from s each process which covers some
shared variable exactly one step so that they write the shared
variables they cover. Let s′ be the resulting system state.

Next, we construct an execution fragment α1 starting in
s′ and not involving i by invoking a rr-read(r ′′) operation R
at some process j �= i whose rank r ′′ satisfies r ′′ > r ′. By
the Liveness and the Safety properties of the ranked register,
R must return a value written by some rr-write operation
with rank at most r .

We now construct another execution fragment α2 which
starts from s as follows: We run i solo until W commits;
since no higher rank appears in s, by the Non-Triviality
property W must indeed commit. By assumption, it writes
only shared variables that are covered in s. From the result-
ing state, we run each process which covers some shared
variable exactly one step so they overwrite everything writ-
ten by i in its solo run. Let s′′ be the resulting state. Since
s′′ j∼ s′ for all j �= i , we can extend α2 by running α1 from
s′′.

By the Safety property of the ranked register, the rr-read
operation R must return the value written by W in this exe-
cution. However, it returns a value written by a rr-write op-
eration with rank at most r thus violating safety. A contra-
diction. �

We now set off to prove the lower bound. We use the follow-
ing strategy: We first prove using Lemma 10 that with any
algorithm implementing the ranked register for n ≥ 1 pro-
cesses, it is possible to bring the system to a state where at
least n − 1 shared variables are covered while running only
n − 1 processes. In this state we invoke a rr-write operation
whose rank is higher than the the rank of every operation

Active Disk Paxos with infinitely many processes 83

invoked so far. Since this rr-write operation must commit
(Non-Triviality), by Lemma 9, it must write to some shared
variable which has not been covered yet. This implies that
another shared variable is needed in addition to the n − 1
covered ones.

Lemma 10 Suppose that there exists an algorithm that im-
plements a ranked register for n ≥ 1 processes using only
shared atomic read/write registers. Let s be any reachable
system state. Then for any k, 1 ≤ k ≤ n − 1, there exists a
state sk which is reachable from s using steps of processes
1 . . . k only, such that at least k distinct variables are cov-
ered in sk .

Proof The proof is by induction on k.
Basis: k = 1. Let s be any system state. We first run

process 1 until it returns from the last operation invoked on
1, if any. This must happen due to the Liveness property of
the ranked register. Let t be the resulting system state.

In t , we let process 1 invoke a rr-write operation W
whose rank is higher than the ranks of all operations invoked
so far. By Non-Triviality, W must commit. By Lemma 9, W
must write some shared variable which is not covered in state
s. We then run 1 until it covers this variable. The resulting
state s1 satisfies the lemma requirements.

Inductive step: Suppose the lemma holds for k, where
1 ≤ k ≤ n − 2. Let us prove it for k + 1. Using the in-
duction hypothesis, we run k processes from s until the state
sk is reached where at least k distinct shared variables are
covered. Starting in sk , Starting in t , we run process k + 1
until the last operation invoked on k + 1 returns. This must
happen due to Liveness. Let t be the resulting state.

In t we let process k + 1 invoke a rr-write operation
W whose rank is higher than the ranks of all operations in-
voked so far. By Non-Triviality, W must commit. Moreover,
by Lemma 9, W must write some shared variable which is
not covered in sk . So we run k + 1 until it covers this shared
variable. The resulting state sk+1 satisfies the lemma require-
ments. �

We are now ready to prove the main theorem:

Theorem 7 If there exists an algorithm that implements a
ranked register for n ≥ 1 processes, then it must use at least
n shared atomic read/write registers.

Proof Assume in contradiction that there exists an algorithm
which implements a ranked register for n ≥ 1 processes
using n − 1 shared read/write registers.

Let s be the initial system state. Note that there are no
covered variables in s. We use the result of Lemma 10 and
run n − 1 processes from s until the state sn−1 is reached
where the processes cover n − 1 distinct shared variables.
We then invoke a rr-write operation W on process n whose
rank is higher than the ranks of all operations invoked so
far. By Non-Triviality, W must commit. By Lemma 9, W
must write some shared variable which is not covered in
sn−1. However, all n−1 shared variables are covered in sn−1.
A contradiction. �

Acknowledgements We are thankful to Ittai Abraham, Danny Dolev
and Idit Keidar for helpful discussions of the results in this paper.

References

1. Afek, Y., Greenberg, D.S., Merritt, M., Taubenfeld, G.: Com-
puting with faulty shared objects. J. ACM 42(6), 1231–1274
(1995)

2. Acharya, A., Uysal, M., Saltz, J.: Active Disks: programming
model, algorithms and evaluation. In: Proceedings of the 8th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII) (1998)

3. Amiri, K., Gibson, G.A., Golding, R.: Highly concurrent shared
storage. In: Proceedings of the International Conference on Dis-
tributed Computing Systems (ICDCS ’2000) (2000)

4. Anderson, T., Dahlin, M., Neefe, J., Patterson, D., Roselli, D.,
Wang, R.: Serverless network file systems. ACM Trans. Comput.
Syst. 14(1), 41–79 (1996)

5. Birman, I.K., Joseph, T.: Exploiting virtual synchrony in dis-
tributed systems. In: Proceedings of the 11th Annual Symposium
on Operating Systems Principles, pp. 123–138 (1987)

6. Boichat, R., Dutta, P., Frolund, S., Guerraoui, R.: Deconstruct-
ing Paxos. Technical Report DSC ID:200106, Communication
Systems Department (DSC), École Polytechnic Fédérale de
Lausanne (EPFL) (2001). Available at http://dscwww.epfl.ch/EN/
publications/documents/tr01 006.pdf

7. Boichat, R., Dutta, P., Frolund, S., Guerraoui, R.: Deconstructing
paxos. ACM SIGACT News Distrib. Comput. Column. 34(1), 47–
67 (2003)

8. Burns, R.: Data management in a distributed file system for Stor-
age Area Networks. PhD Thesis, Department of Computer Sci-
ence, University of California, Santa Cruz (2000)

9. Burns, J., Lynch, N.: Bounds on shared memory for mutual exclu-
sion. Inform. Comput. 107(2), 171–184 (1993)

10. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure de-
tector for solving consensus. J. ACM 43(4), 685–722 (1996)

11. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

12. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication
specifications: a comprehensive study. ACM Comput. Surv. 33(4),
1–43 (2001)

13. Chockler, G.V., Keidar, I., Malkhi, D.: Computing with Byzantine
storage. In: Preparation.

14. Chockler, G., Malkhi, D., Dolev, D.: State-machine replication
with infinitely many processes: a position paper. In: Proceedings
of the International Workshop on Future Directions in Distributed
Computing (FuDiCo), Bertinoro, Italy (2002)

15. Chockler, G., Malkhi, D., Reiter, M.K.: Backoff protocols for dis-
tributed mutual exclusion and ordering. In: Proceedings of the
21st International Conference on Distributed Computing Systems,
pp. 11–20 (2001)

16. Chor, B., Dwork, C.: Randomization in Byzantine agreement. In:
Micali, S. (ed.). Advances in Computing Research, Randomness
in Computation, vol. 5, pp. 443–497. JAI Press (1989)

17. Cristian, F., Fetzer, C.: The timed asynchronous distributed system
model. In: Proceedings of the 28th Annual International Sympo-
sium on Fault-Tolerant Computing (1998)

18. DePrisco, R., Lampson, B., Lynch, N.: Fundamental study: revisit-
ing the Paxos algorithm. Theoret. Comput. Sci. 243, 35–91 (2000)

19. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchro-
nism needed for distributed consensus. J. ACM 34(1), 77–97
(1987)

20. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

21. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

84 G. Chockler, D. Malkhi

22. Fekete, A., Lynch, N., Shvartsman, A.: Specifying and using a
partitionable group communication service. ACM Trans. Comput.
Syst. 19(2), 171–216 (2001)

23. Gafni, E., Lamport, L.: Disk Paxos. Distribut. Comput. 16(1), 1–
20 (2003)

24. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy,
and algorithms for unbounded concurrency. In: Proceedings of the
20th ACM Symposium on Principles of Distributed Computing
(PODC 2001) (2001)

25. Gibson, G.A., Nagle, D.F., Amiri, K., Butler, J., Chang, F.W.,
Gobioff, H., Hardin, C., Riedel, E., Rochberg, D., Zelenka, J.: A
cost-effective high-bandwidth storage architecture. In: Proceed-
ings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(1998)

26. Gibson, G.A., Nagle, D.F., Amiri, K., Chang, F.W., Gobioff, H.,
Riedel, E., Rochberg, D., Zelenka, J.: Filesystems for network-
attached secure disks. Technical Report CMU-CS-97–118 (1997)

27. Gobioff, H., Gibson, G.A., Tygar, D.: Security for network
attached storage devices. Technical Report CMU-CS-97–185
(1997)

28. Hotz, S.,Van Meter, R., Finn, G.: Internet protocols for network-
attached peripherals. In: Proceedings of the Sixth NASA Goddard
Conference on Mass Storage Systems and Technologies in con-
junction with 15th IEEE Symposium on Mass Storage Systems
(1998)

29. Hartman, J.H., Murdock, I., Spalink, T.: The Swarm scalable stor-
age system. In: Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems (ICDCS ’99) (1999)

30. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Languag. Syst. 11(1), 124–149 (1991)

31. Jayanti, P., Chandra, T., Toueg, S.: Fault-tolerant wait-free shared
objects. J. ACM 45(3), 451–500 (1998)

32. Keidar, I., Dolev, D.: Totally ordered broadcast in the face of
network partitions: exploiting group communication for replica-
tion in partitionable networks. In: Avresky, D. (ed.). Dependable
Network Computing, Chap. 3. Kluwer Academic Publications
(2000)

33. Lamport, L.: Time, clocks, and the ordering of events in dis-
tributed systems. Communi. ACM 21(7), 558–565 (1978)

34. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

35. Lamport, L.: Paxos made simple. Distribut. Comput. Column.
SIGACT News 32(4), 34–58 (2001)

36. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals prob-
lem. ACM Trans. Program. Languag. Syst. 4(3), 382–401 (1982)

37. Lampson, B.W.: How to build a highly available system using
consensus. In: Proceedings of the 10th International Workshop on
Distributed Algorithms (WDAG), LNCS 1151. Springer-Verlag,
Berlin (1996)

38. Lee, E.K., Thekkath, C.: Petal: distributed virtual disks. In: Pro-
ceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-VII), pp. 84–92 (1996)

39. Lo, W.K., Hadzilacos, V.: Using failure detectors to solve con-
sensus in asynchronous shared-memory systems. In: Proceed-
ings of the 8th International Workshop on Distributed Algo-
rithms (WDAG), LNCS 857, pp. 280–295. Springer-Verlag, Berlin
(1994)

40. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agree-
ment among unreliable asynchronous processes, In: Franco, P.P.
(ed.). Parallel and Distributed Computing: vol. 4 of Advances in
Computing Research, pp. 163–183. JAI Press, Greenwich, Conn.
(1987)

41. Malkhi, D.: From Byzantine agreement to practical survivabil-
ity. In: The International Workshop on Self-Repairing and Self-
Configurable Distributed Systems (RCDS’2002) Osaka, Japan
(2002)

42. Malkhi, D., Reiter, M.K.: An architecture for survivable coordina-
tion in large-scale systems. IEEE Transact. Knowledge Data Eng.
12(2), 187–202 (2000)

43. Merritt, M., Taubenfeld, G.: Computing with infinitely many
processes. In: Proceedings of 14th International Symposium on
Distributed Computing (DISC ’2000), pp. 164–178 (2000)

44. Mostfaoui, A., Raynal, M.: Leader-based consensus. Parallel Pro-
cess. Lett. 11(1), 95–107 (2001)

45. National Storage Industry Consortium. http://www.nsic.org/nasd
46. Powell, D. (ed.): Group communication. Commun. ACM 39(4),

50–97 (1996)
47. Riedel, E., Faloutsos, C., Gibson, G.A., Nagle, D.: Active

disks for large-scale data processing. IEEE Comput. 68–74
(2001)

48. Skeen, M.D.: Nonblocking commit protocols. In: SIGMOD Inter-
national Conference Management of Data (1981)

49. Skeen, M.D.: Crash recovery in a distributed database system.
PhD Thesis, UC Berkeley (1982)

50. Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surv. 22(4),
299–319 (1990)

51. Thekkath, C., Mann, T., Lee, E.K.: Frangipani: a scalable dis-
tributed file system. In: Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pp. 224–237 (1997)

