
Large Scale Graph Processing
with Apache Giraph

Sebastian Schelter

Invited talk at GameDuell Berlin
29th May 2012

the mandatory ‚about me‘ slide

• PhD student at the Database Systems and
Information Management Group (DIMA)
of TU Berlin
– Stratosphere, database inspired approach to

a next generation large scale processing
system, joint research project with HU Berlin
and HPI Potsdam

– European Research Project ‘ROBUST’ dealing
with the analysis of huge-scale online
business communities

• involved in open source as committer and
PMC member of Apache Mahout and
Apache Giraph

Overview

1) Graphs

2) Graph processing with Hadoop/MapReduce

3) Google Pregel

4) Apache Giraph

5) Outlook: everything is a network

Graph recap

graph: abstract representation of a set of objects
(vertices), where some pairs of these objects are
connected by links (edges), which can be directed or
undirected

Graphs can be used to model arbitrary things like
road networks, social networks, flows of goods, etc.

Majority of graph algorithms
are iterative and traverse
the graph in some way A

C

B

D

The Web

• the World Wide Web itself can be seen as a huge
graph, the so called web graph
– pages are vertices connected by edges that represent

hyperlinks

– the web graph has several billion vertices and several
billion edges

• the success of major internet companies such as
Google is based on the ability to conduct
computations on this huge graph

Google‘s PageRank

• success factor of Google‘s search engine:
– much better ranking of search results

• ranking is based on PageRank,
a graph algorithm computing
the ‚importance‘ of webpages
– simple idea: look at the structure

of the underlying network
– important pages have a lot of links

from other important pages

• major technical success factor of Google:
ability to conduct web scale graph processing

Social Networks

• on facebook, twitter, LinkedIn, etc, the users and
their interactions form a social graph
– users are vertices connected by edges that represent

some kind of interaction such as
friendship, following, business contact

• fascinating research questions:
– what is the structure of

these graphs?
– how do they evolve over time?

• analysis requires knowledge
in both computer science and social sciences

six degrees of separation

• small world problem
– through how many social contacts do

people know each other on average?

• small world experiment by Stanley Milgram
– task: deliver a letter to a recipient whom you

don‘t know personally
– you may forward the letter only to persons that

you know on a first-name basis
– how many contacts does it take on average until the letter reaches the target?

• results
– it took 5.5 to 6 contacts on average
– confirmation of the popular assumption of ‚six degrees of separation‘

between humans
– experiment criticised due to small number of participants, possibly biased

selection

four degrees of separation

• the small word problem as a graph problem in social
network analysis
– what is the average distance between two users in a social

graph?

• in early 2011, scientists conducted a world scale
experiment using the Facebook social graph
– 721 million users, 69 billion friendships links
– result: average distance in Facebook is 4.74

→ ‚four degrees of separation‘

→ large scale graph processing gives unpredecented
opportunities for the social sciences

Overview

1) Graphs

2) Graph processing with Hadoop/MapReduce

3) Google Pregel

4) Apache Giraph

5) Outlook: everything is a network

Why not use MapReduce/Hadoop?

• MapReduce/Hadoop is the current standard for data
intensive computing, why not use it for graph
processing?

• Example: PageRank
– defined recursively

– each vertex distributes its
authority to its neighbors in
equal proportions  






),(ijj j

j

i

d

p
p

Textbook approach to
PageRank in MapReduce

• PageRank p is the principal eigenvector of the Markov matrix
M defined by the transition probabilities between web pages

• it can be obtained by iteratively multiplying an initial
PageRank vector by M (power method)

row 1 of M

pi

row n of M

pi+1
row 2 of M

∙

∙

∙

ii
Mpp 

1

Drawbacks

• Not intuitive: only crazy scientists
think in matrices and eigenvectors

• Unnecessarily slow: Each iteration is a single
MapReduce job with lots of overhead
– separately scheduled

– the graph structure is read from disk

– the intermediary result is written to HDFS

• Hard to implement: a join has to be implemented
by hand, lots of work, best strategy is data
dependent

Overview

1) Graphs

2) Graph processing with Hadoop/MapReduce

3) Google Pregel

4) Apache Giraph

5) Outlook: everything is a network

Google Pregel

• distributed system especially developed for
large scale graph processing

• intuitive API that let‘s you ‚think like a vertex‘

• Bulk Synchronous Parallel (BSP) as execution
model

• fault tolerance by checkpointing

Bulk Synchronous Parallel (BSP)

processors

local computation

communication

barrier
synchronization

superstep

Vertex-centric BSP

• each vertex has an id, a value, a list of its adjacent neighbor ids and the
corresponding edge values

• each vertex is invoked in each superstep, can recompute its value and
send messages to other vertices, which are delivered over superstep
barriers

• advanced features : termination votes, combiners, aggregators, topology
mutations

vertex1

vertex2

vertex3

vertex1

vertex2

vertex3

vertex1

vertex2

vertex3

superstep i superstep i + 1 superstep i + 2

Master-slave architecture

• vertices are partitioned and
assigned to workers
– default: hash-partitioning

– custom partitioning possible

• master assigns and coordinates,
while workers execute vertices
and communicate with each
other

Master

Worker 1 Worker 2 Worker 3

PageRank in Pregel

class PageRankVertex {

void compute(Iterator messages) {

if (getSuperstep() > 0) {

// recompute own PageRank from the neighbors messages

pageRank = sum(messages);

setVertexValue(pageRank);

}

if (getSuperstep() < k) {

// send updated PageRank to each neighbor

sendMessageToAllNeighbors(pageRank / getNumOutEdges());

} else {

voteToHalt(); // terminate

}

}}

 






),(ijj j

j

i

d

p
p

PageRank toy example

A B C

.33 .33 .33

.17

.17

.33.17

Superstep 0

.17

.17 .50 .34

.09

.09

.34.25

Superstep 1

.25

.25 .43 .34

.13

.13

.34.22

Superstep 2

.22

Input graph

Cool, where can I download it?

• Pregel is proprietary, but:

– Apache Giraph is an open source
implementation of Pregel

– runs on standard Hadoop infrastructure

– computation is executed in memory

– can be a job in a pipeline (MapReduce, Hive)

– uses Apache ZooKeeper for synchronization

Overview

1) Graphs

2) Graph processing with Hadoop/MapReduce

3) Google Pregel

4) Apache Giraph

5) Outlook: everything is a network

Giraph‘s Hadoop usage

TaskTracker

worker worker

TaskTracker

worker worker

TaskTracker

worker worker

TaskTracker

master workerZooKeeper
JobTracker
NameNode

Anatomy of an execution

Setup
• load the graph from disk
• assign vertices to workers
• validate workers health

Compute
• assign messages to workers
• iterate on active vertices
• call vertices compute()

Synchronize
• send messages to workers
• compute aggregators
• checkpoint

Teardown
• write back result
• write back aggregators

Who is doing what?

• ZooKeeper: responsible for computation state
– partition/worker mapping
– global state: #superstep
– checkpoint paths, aggregator values, statistics

• Master: responsible for coordination
– assigns partitions to workers
– coordinates synchronization
– requests checkpoints
– aggregates aggregator values
– collects health statuses

• Worker: responsible for vertices
– invokes active vertices compute() function
– sends, receives and assigns messages
– computes local aggregation values

Example: finding the connected
components of an undirected graph

• algorithm: propagate smallest vertex label to
neighbors until convergence

• in the end, all vertices of a component will
have the same label

0

1

2

3
0

0

1

3
0

0

0

3

Step 1: create a custom vertex

public class ConnectedComponentsVertex
extends BasicVertex<IntWritable, IntWritable, NullWritable, IntWritable> {

public void compute(Iterator messages) {

int currentLabel = getVertexValue().get();

while (messages.hasNext()) {

int candidate = messages.next().get();

currentLabel = Math.min(currentLabel, candidate); // compare with neighbors labels

}

// propagation is necessary if we are in the first superstep or if we found a new label

if (getSuperstep() == 0 || currentLabel != getVertexValue().get()) {

setVertexValue(new IntWritable(currentLabel));

sendMsgToAllEdges(getVertexValue()); // propagate newly found label to neighbors

}

voteToHalt(); // terminate this vertex, new messages might reactivate it

}}

Step 2: create a custom input format

• input is a text file with adjacency lists, each line
looks like: <vertex_ID> <neighbor1_ID> <neighbor2_ID> ...

public class ConnectedComponentsInputFormat extends

TextVertexInputFormat<IntWritable, IntWritable, NullWritable, IntWritable> {

static class ConnectedComponentsVertexReader extends

TextVertexReader<IntWritable, IntWritable, NullWritable, IntWritable> {

public BasicVertex<IntWritable, IntWritable, NullWritable, IntWritable> getCurrentVertex() {

// instantiate vertex

BasicVertex<IntWritable, IntWritable, NullWritable, IntWritable> vertex = ...

// parse a line from the input and initialize the vertex

vertex.initialize(...);

return vertex;

}}}

Step 3: create a custom output format

• output is a text file, each line looks like:
<vertex_ID> <component_ID>

public class VertexWithComponentTextOutputFormat extends

TextVertexOutputFormat<IntWritable, IntWritable, NullWritable> {

public static class VertexWithComponentWriter extends

TextVertexOutputFormat.TextVertexWriter<IntWritable, IntWritable, NullWritable> {

public void writeVertex(BasicVertex<IntWritable, IntWritable, NullWritable, ?> vertex) {

// write out the vertex ID and the vertex value

String output = vertex.getVertexId().get() + '\t‚ + vertex.getVertexValue().get();

getRecordWriter().write(new Text(output), null);

}

}}

Step 4: create a combiner (optional)

• we are only interested in the smallest label sent
to a vertex, therefore we can apply a combiner

public class MinimumIntCombiner extends VertexCombiner<IntWritable, IntWritable> {

public Iterable<IntWritable> combine(IntWritable target, Iterable<IntWritable> messages) {

int minimum = Integer.MAX_VALUE;

// find minimum label

for (IntWritable message : messages) {

minimum = Math.min(minimum, message.get());

}

return Lists.<IntWritable>newArrayList(new IntWritable(minimum));

}

Experiments

– Setup: 6 machines with 2x 8core Opteron CPUs, 4x 1TB disks
and 32GB RAM each, ran 1 Giraph worker per core

– Input: Wikipedia page link graph (6 million vertices, 200 million
edges)

– PageRank on Hadoop/Mahout
• 10 iterations approx. 29 minutes
• average time per iteration: approx. 3 minutes

– PageRank on Giraph
• 30 iterations took approx. 15 minutes
• average time per iteration: approx. 30 seconds

→10x performance improvement

hardware utilization

Connected Components

• execution takes approx. 4 minutes

– subsecond iterations after superstep 5

→ Giraph exploits small average distance!

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12

d
u

ratio
n

 in
 m

illise
co

n
d

s

supersteps

Overview

1) Graphs

2) Graph processing with Hadoop/MapReduce

3) Google Pregel

4) Apache Giraph

5) Outlook: everything is a network

Everything is a network!

distributed matrix factorization

• decompose matrix A into product of two lower
dimensional feature matrices R and C

• master algorithm: dimension reduction, solving least
squares problems, compressing data, collaborative
filtering, latent semantic analysis, ...

A R
CT

 

Alternating Least Squares

• minimize squared error over all known entries:

• Alternating Least Squares

– fix one side, solve for the other, repeat until convergence

– easily parallelizable, iterative algorithm

• what does this all have to with graphs?

2

,
)(),(




Aji j

T

iij
craCRf

matrices can be represented by graphs

• represent matrix as bipartite graph

• now the ALS algorithm can easily be implemented as a
Giraph program

– every vertex holds a row vector of one of the feature matrices

– in each superstep the vertices of one side recompute their
vector and send it to the connected vertices on the other side



























31

7

52
2

5

7

1

3

row 1

row 2

row 3

column 1

column 2

column 3

What‘s to come?

• Current and future work in Giraph

– out-of-core messaging

– algorithms library

Thank you. Questions?

Database Systems and Information
Management Group (DIMA), TU Berlin

