
FrogWild! – Fast PageRank Approximations
on Graph Engines

Ioannis Mitliagkas
ECE, UT Austin

ioannis@utexas.edu

Michael Borokhovich
ECE, UT Austin

michaelbor@utexas.edu
Alexandros G. Dimakis

ECE, UT Austin
dimakis@austin.utexas.edu

Constantine Caramanis
ECE, UT Austin

constantine@utexas.edu

ABSTRACT
We propose FrogWild, a novel algorithm for fast approxi-
mation of high PageRank vertices, geared towards reducing
network costs of running traditional PageRank algorithms.
Our algorithm can be seen as a quantized version of power
iteration that performs multiple parallel random walks over
a directed graph. One important innovation is that we in-
troduce a modification to the GraphLab framework that
only partially synchronizes mirror vertices. This partial
synchronization vastly reduces the network traffic generated
by traditional PageRank algorithms, thus greatly reducing
the per-iteration cost of PageRank. On the other hand,
this partial synchronization also creates dependencies be-
tween the random walks used to estimate PageRank. Our
main theoretical innovation is the analysis of the correla-
tions introduced by this partial synchronization process and
a bound establishing that our approximation is close to the
true PageRank vector.

We implement our algorithm in GraphLab and compare
it against the default PageRank implementation. We show
that our algorithm is very fast, performing each iteration in
less than one second on the Twitter graph and can be up to
7× faster compared to the standard GraphLab PageRank
implementation.

1. INTRODUCTION
Large-scale graph processing is becoming increasingly im-

portant for the analysis of data from social networks, web
pages, bioinformatics and recommendation systems. Graph
algorithms are difficult to implement in distributed com-
putation frameworks like Hadoop MapReduce and Spark.
For this reason several in-memory graph engines like Pregel,
Giraph, GraphLab and GraphX [24, 23, 35, 31] are being
developed. There is no full consensus on the fundamental
abstractions of graph processing frameworks but certain pat-
terns such as vertex programming and the Bulk Synchronous
Parallel (BSP) framework seem to be increasingly popular.

PageRank computation [27], which gives an estimate of
the importance of each vertex in the graph, is a core compo-
nent of many search routines; more generally, it represents,
de facto, one of the canonical tasks performed using such
graph processing frameworks. Indeed, while important in
its own right, it also represents the memory, computation
and communication challenges to be overcome in large scale
iterative graph algorithms.

In this paper we propose a novel algorithm for fast approx-
imate calculation of high PageRank vertices. Note that even
though most previous works calculate the complete PageR-
ank vector (of length in the millions or billions), in many
graph analytics scenarios a user wants a quick estimation of
the most important or relevant nodes – distinguishing the
10th most relevant node from the 1, 000th most relevant is
important; the 1, 000, 000th from the 1, 001, 000th much less
so. A simple solution is to run the standard PageRank algo-
rithm for fewer iterations (or with an increased tolerance).
While certainly incurring less overall cost, the per-iteration
cost remains the same; more generally, the question remains
whether there is a more efficient way to approximately re-
cover the heaviest PageRank vertices.

There are many real life applications that may benefit
from a fast top-k PageRank algorithm. One example is grow-
ing loyalty of influential customers [1]. In this application,
a telecom company identifies the top-k influential customers
using the top-k PageRank on the customers’ activity (e.g.,
calls) graph. Then, the company invests its limited bud-
get on improving user experience for these top-k customers,
since they are most important for building good reputation.
Another interesting example is an application of PageRank
for finding keywords and key sentences in a given text. In
[25], the authors show that PageRank performs better than
known machine learning techniques for keyword extraction.
Each unique word (noun, verb or an adjective) is regarded
as a vertex and there is an edge between two words if they
occur in close proximity in the text. Using approximate top-
k PageRank, we can identify the top-k keywords much faster
than obtaining the full ranking. When keyword extraction is
used by time sensitive applications or for an ongoing analysis
of a large number of documents, speed becomes a crucial fac-
tor. The last example we describe here is the application of
PageRank for online social networks (OSN). It is important
in the context of OSNs to be able to predict which users will
remain active in the network for a long time. Such key users
play a decisive role in developing effective advertising strate-
gies and sophisticated customer loyalty programs, both vital
for generating revenue [19]. Moreover, the remaining users
can be leveraged, for instance for targeted marketing or pre-
mium services. It is shown in [19] that PageRank is a much
more efficient predictive measure than other centrality mea-
sures. The main innovation of [19] is the usage of a mixture
of connectivity and activity graphs for PageRank calcula-
tion. Since these graphs are highly dynamic (especially the

1

ar
X

iv
:1

50
2.

04
28

1v
1

 [
cs

.D
C

]
 1

5
Fe

b
20

15

user activity graph), PageRank should be recalculated con-
stantly. Moreover, the key users constitute only a small
fraction of the total number of users, thus, a fast approxi-
mation for the top-PageRank nodes constitutes a desirable
alternative to the exact solution.

In this paper we address this problem. Our algorithm
(called FrogWild for reasons that will become subsequently
apparent) significantly outperforms the simple reduced iter-
ations heuristic in terms of running time, network communi-
cation and scalability. We note that, naturally, we compare
our algorithm and reduced-iteration-PageRank within the
same framework: we implemented our algorithm in GraphLab
PowerGraph and compare it against the built-in PageRank
implementation. A key part of our contribution also involves
the proposal of what appears to be simply a technically mi-
nor modification within the GraphLab framework, but nev-
ertheless results in significant network-traffic savings, and
we believe may nevertheless be of more general interest be-
yond PageRank computations.

Contributions: We consider the problem of fast and
efficient (in the sense of time, computation and communica-
tion costs) computation of the high PageRank nodes, using
a graph engine. To accomplish this we propose and ana-
lyze an new PageRank algorithm specifically designed for
the graph engine framework, and, significantly, we propose
a modification of the standard primitives of the graph en-
gine framework (specifically, GraphLab PowerGraph), that
enables significant network savings. We explain in further
detail both our objectives, and our key innovations.

Rather than seek to recover the full PageRank vector, we
aim for the top k PageRank vertices (where k is considered
to be approximately in the order of 10 − 1000). Given an
output of a list of k vertices, we define two natural accuracy
metrics that compare the true top-k list with our output.
The algorithm we propose, FrogWild operates by start-
ing a small (sublinear in the number of vertices n) number
of random walkers (frogs) that jump randomly on the di-
rected graph. The random walk interpretation of PageRank
enables the frogs to jump to a completely random vertex
(teleport) with some constant probability (set to 0.15 in our
experiments, following standard convention). After we al-
low the frogs to jump for time equal to the mixing time of
this non-reversible Markov chain, their positions are sam-
pled from the invariant distribution π which is normalized
PageRank. The standard PageRank iteration can be seen as
the continuous limit of this process (i.e., the frogs become
water), which is equivalent to power iteration for stochastic
matrices.

The main algorithmic contributions of this paper are com-
prised of the following three innovations. First, we argue
that discrete frogs (a quantized form of power iteration) is
significantly better for distributed computation when one is
interested only in the large entries of the eigenvector π. This
is because each frog produces an independent sample from
π. If some entries of π are substantially larger and we only
want to determine those, a small number of independent
samples suffices. We make this formal using standard Cher-
noff bounds (see also [30, 14] for similar arguments). On the
contrary, during standard PageRank iterations, vertices pass
messages to all their out-neighbors since a non-zero amount
of water must be transferred. This tremendously increases
the network bandwidth especially when the graph engine is
over a cluster with many machines.

One major issue with simulating discrete frogs in a graph
engine is teleportations. Graph frameworks partition ver-
tices to physical nodes and restrict communication on the
edges of the underlying graph. Global random jumps would
create dense messaging patterns that would increase com-
munication. Our second innovation is a way of obtaining
an identical sampling behavior without teleportations. We
achieve this by initiating the frogs at uniformly random posi-
tions and having them perform random walks for a life span
that follows a geometric random variable. The geometric
probability distribution depends on the teleportation prob-
ability and can be calculated explicitly.

Our third innovation involves a simple proposed modifica-
tion for graph frameworks. Most modern graph engines (like
GraphLab PowerGraph [17]) employ vertex-cuts as opposed
to edge-cuts. This means that each vertex of the graph is
assigned to multiple machines so that graph edges see a local
vertex mirror. One copy is assigned to be the master and
maintains the master version of vertex data while remaining
replicas are mirrors that maintain local cached read–only
copies of the data. Changes to the vertex data are made to
the master and then replicated to all mirrors at the next syn-
chronization barrier. This architecture is highly suitable for
graphs with high-degree vertices (as most real-world graphs
are) but has one limitation when used for a few random
walks: imagine that vertex v1 contains one frog that wants
to jump to v2. If vertex v1 has very high degree, it is very
likely that multiple replicas of that vertex exist, possibly
one in each machine in the cluster. In an edge-cut scenario
only one message would travel from v1 → v2, assuming v1
and v2 are located in different physical nodes. However,
when vertex-cuts are used, the state of v1 is updated (i.e.,
contains no frogs now) and this needs to be communicated
to all mirrors. It is therefore possible that a single random
walk can create a number of messages equal to the number
of machines in the cluster.

We modify PowerGraph to expose a scalar parameter ps
per vertex. By default, when the framework is running, in
each super-step all masters synchronize their programs and
vertex data with their mirrors. Our modification is that
for each mirror we flip an independent coin and synchronize
with probability ps. Note that when the master does not
synchronize the vertex program with a replica, that replica
will not be active during that super-step. Therefore, we can
avoid the communication and CPU execution by performing
limited synchronization in a randomized way.

FrogWild is therefore executed asynchronously but re-
lies on the Bulk Synchronous execution mode of PowerGraph
with the additional simple randomization we explained. The
name of our algorithm is inspired by HogWild [29], a lock-
free asynchronous stochastic gradient descent algorithm pro-
posed by Niu et al.. We note that PowerGraph does support
an asynchronous execution mode [17] but we implemented
our algorithm by a small modification of synchronous execu-
tion. As discussed in [17], the design of asynchronous graph
algorithms is highly nontrivial and involves locking proto-
cols and other complications. Our suggestion is that for the
specific problem of simulating multiple random walks on a
graph, simply randomizing synchronization can give signifi-
cant benefits while keeping design simple.

While the parameter ps clearly has the power to signifi-
cantly reduce network traffic – and indeed, this is precisely
born out by our empirical results – it comes at a cost: the

2

standard analysis of the Power Method iteration no longer
applies. The main challenge that arises is the theoretical
analysis of the FrogWild algorithm. The model is that
each vertex is separated across machines and each connec-
tion between two vertex copies is present with probability ps.
A single frog performing a random walk on this new graph
defines a new Markov Chain and this can be easily designed
to have the same invariant distribution π equal to normal-
ized PageRank. The complication is that the trajectories
of frogs are no longer independent: if two frogs are in ver-
tex v1 and (say) only one mirror v′1 synchronizes, both frogs
will need to jump through edges connected with that par-
ticular mirror. Worse still, this correlation effect increases,
the more we seek to improve network traffic by further de-
creasing ps. Therefore, it is no longer true that one obtains
independent samples from the invariant distribution π. Our
theoretical contribution is the development of an analytical
bound that shows that these dependent random walks still
can be used to obtain π̂ that is provably close to π with high
probability. We rely on a coupling argument combined with
an analysis of pairwise intersection probabilities for random
walks on graphs. In our convergence analysis we use the
contrast bound [12] for non-reversible chains.

1.1 Notation
Lowercase letters denote scalars or vectors. Uppercase

letters denote matrices. The (i, j) element of a matrix A
is Aij . We denote the transpose of a matrix A by A′. For
a time-varying vector x, we denote its value at time t by
xt. When not otherwise specified, ‖x‖ denotes the l2-norm
of vector x. We use ∆n−1 for the probability simplex in
n dimensions, and and ei ∈ ∆n−1 for the indicator vector
for item i. For example, e1 = [1, 0, ...0]. For the set of all
integers from 1 to n we write [n].

2. PROBLEM AND MAIN RESULTS
We now make precise the intuition and outline given in

the introduction. We first define the problem, giving the
definition of PageRank, the PageRank vector, and therefore
its top elements. We then define the algorithm, and finally
state our main analytical results.

2.1 Problem Formulation
Consider a directed graph G = (V,E) with n vertices

(|V | = n) and let A denote its adjacency matrix. That is,
Aij = 1 if there is an edge from j to i. Otherwise, the value is
0. Let dout(j) denote the number of successors (out-degree)
of vertex j in the graph. We assume that all nodes have
at least one successor, dout(j) > 0. Then we can define the
transition probability matrix P as follows:

Pij = Aij/dout(j). (1)

The matrix is left-stochastic, which means that each of its
rows sums to 1. We call G(V,E) the original graph, as op-
posed to the PageRank graph which includes a probability
of transitioning to any given vertex. We now define this
transition probability matrix, and the PageRank vector.

Definition 1 (PageRank [27]). Consider the matrix

Q , (1− pT)P + pT
1

n
1n×n.

where pT ∈ [0, 1] is a parameter, most commonly set to 0.15.
The PageRank vector π ∈ ∆n−1 is defined as the principal

right eigenvector of Q. That is, π , v1(Q). By the Perron-
Frobenius theorem, the corresponding eigenvalue is 1. This
implies the fixed-point characterization of the PageRank vec-
tor, π = Qπ.

The PageRank vector assigns high values to important
nodes. Intuitively, important nodes have many important
predecessors (other nodes that point to them). This recur-
sive definition is what makes PageRank robust to manipula-
tion, but also expensive to compute. It can be recovered by
exact eigendecomposition of Q, but at real problem scales
this is prohibitively expensive. In practice, engineers often
use a few iterations of the power method to get a ”good-
enough” approximation.

The definition of PageRank hinges on the left-stochastic
matrix Q, suggesting a connection to Markov chains. In-
deed, this connection is well documented and studied [2,
16]. An important property of PageRank from its random
walk characterization, is the fact that π is the invariant dis-
tribution for a Markov chain with dynamics described by
Q. A non-zero pT , also called the teleportation probability,
introduces a uniform component to the PageRank vector π.
We see in our analysis that this implies ergodicity and faster
mixing for the random walk.

2.1.1 Top PageRank Elements
Given the true PageRank vector, π and an estimate v

given by an approximate PageRank algorithm, we define
the top-k accuracy using two metrics.

Definition 2 (Mass Captured). Given a distribution
v ∈ ∆n−1, the true PageRank distribution π ∈ ∆n−1 and an
integer k ≥ 0, we define the mass captured by v as follows.

µk(v) , π(argmax|S|=kv(S))

For a set S ∈ [n], v(S) =
∑
i∈S v(i) denotes the total mass

ascribed to the set by the distribution v ∈ ∆n−1.

Put simply, the set S∗ that gets the most mass according
to v out of all sets of size k, is evaluated according to π and
that gives us our metric. It is maximized by π itself, i.e. the
optimal value is µk(π).

The second metric we use is the exact identification prob-
ability, i.e. the fraction of elements in the output list that
are also in the true top-k list. Note that the second metric is
limited in that it does not give partial credit for high PageR-
ank vertices that were not in the top-k list. In our experi-
ments in Section 3, we mostly use the normalized captured
mass accuracy metric but also report the exact identification
probability for some cases – typically the results are similar.

We subsequently describe our algorithm. We attempt to
approximate the heaviest elements of the invariant distribu-
tion of a Markov Chain, by simultaneously performing mul-
tiple random walks on the graph. The main modification to
PowerGraph, is the exposure of a parameter, ps, that con-
trols the probability that a given master node synchronizes
with any one of its mirrors. Per step, this leads to a propor-
tional reduction in network traffic. The main contribution
of this paper is to show that we get results of comparable
or improved accuracy, while maintaining this network traffic
advantage. We demonstrate this empirically in Section 3.

3

2.2 Algorithm
During setup, the graph is partitioned using GraphLab’s

default ingress algorithm. At this point each one of N frogs
is born on a vertex chosen uniformly at random. Each vertex
i carries a counter initially set to 0 and denoted by c(i).
Scheduled vertices execute the following program.

Incoming frogs from previously executed vertex programs,
are collected by the init() function. At apply() every frog
dies with probability pT = 0.15. This, along with a uniform
starting position, effectively simulates the 15% uniform com-
ponent from Definition 1.

A crucial part of our algorithm is the change in synchro-
nization behaviour. The <sync> step only synchronizes a
ps fraction of mirrors leading to commensurate gains in net-
work traffic (cf. Section 3). This patch on the GraphLab
codebase was only a few lines of code. Section 3 contains
more details regarding the implementation.

The scatter() phase is only executed for edges e incident
to a mirror of i that has been synchronized. Those edges
draw a binomial number of frogs to send to their other end-
point. The rest of the edges perform no computation. The
frogs sent to vertex j at the last step will be collected at the
init() step when j executes.

FrogWild! vertex program

Input parameters: ps, pT = 0.15, t

apply(i) K(i)← [# incoming frogs]

If t steps have been performed, c(i)← c(i)+K(i) and halt.

For every incoming frog:

With probability pT , frog dies:

c(i)← c(i) + 1,

K(i)← K(i)− 1.

<sync> For every mirror m of vertex i:

With probability ps:

Synchronize state with mirror m.

scatter(e = (i, j)) [Only on synchronized mirrors]

Generate Binomial number of frogs:

x ∼ Bin

(
K(i),

1

dout(i)ps

)
Send x frogs to vertex j: signal(j,x)

Parameter pT is the teleportation probability from the
random surfer model in [27]. To get PageRank using ran-
dom walks, one could adjust the transition matrix P as de-
scribed in Definition 1 to get the matrix Q. Alternatively,
the process can be replicated by a random walk following
the original matrix P , and teleporting at every time, with
probability pT . The destination for this teleportation is cho-
sen uniformly at random from [n]. We are interested in the
position of a walk at a predetermined point in time as that
would give us a sample from π. This holds as long as we
allow enough time for mixing to occur.

Due to the inherent markovianity in this process, one
could just consider it starting from the last teleportation
before the predetermined stopping time. When the mixing
time is large enough, the number of steps performed between
the last teleportation and the predetermined stopping time,

denoted by X, is geometrically distributed with parameter
pT . This follows from the time-reversibility in the telepor-
tation process: inter-teleportation times are geometrically
distributed, so as long as the first teleportation event hap-
pens before the stopping time, then X ∼ Geom(pT).

This establishes that, the FrogWild! process – where a
frog performs a geometrically distributed number of steps
following the original transition matrix P – closely mimics
a random walk that follows the adjusted transition matrix,
Q. In practice, we stop the process after t steps to get a
good approximation. To show our main result, Theorem 1,
we analyze the latter process.

Using a binomial distribution to independently generate
the number of frogs in the scatter() phase closely mod-
els the effect of random walks. The marginal distributions
are correct, and the number of frogs, that did not die dur-
ing the apply() step, is preserved in expectation. For our
implementation we resort to a more efficient approach. As-
suming K(i) frogs survived the apply() step, and M mirrors

where picked for synchronization, then we send dK(i)
M
e frogs

to min(K(i),M) mirrors. If the number of available frogs is
less than the number of synchronized mirrors, we pick K(i)
arbitrarily.

2.3 Main Result
Our analytical results essentially provide a high probabil-

ity guarantee that our algorithm produces a solution that
approximates well the PageRank vector. Recall that the
main modification of our algorithm involves randomizing the
synchronization between master nodes and mirrors. For our
analysis, we introduce a broad model to deal with partial
synchronization, in Appendix A.

Our results tell us that partial synchronization does not
change the distribution of a single random walk. To make
this and our other results clear, we need the simple defini-
tion.

Definition 3. We denote the state of random walk i at
its tth step by sti.

Then, we see that P
(
st+1
1 = i

∣∣st1 = j
)

= 1/dout(j), and

xt+1
1 = Pxt1. This follows simply by the symmetry assumed

in Definition 8. Thus if we were to sample in serial, the
modification of the algorithm controlling (limiting) synchro-
nization would not affect each sample, and hence would not
affect our estimate of the invariant distribution. However,
we start multiple (all) random walks simultaneously. In this
setting, the fundamental analytical challenge stems from the
fact that any set of random walks with intersection are now
correlated. The key to our result is that we can control the
effect of this correlation, as a function the parameter ps and
the pairwise probability that two random walks intersect. We
define this formally.

Definition 4. Suppose two walkers l1 and l2 start at the
same time and perform t steps. The probability that they
meet is defined as follows.

p∩(t) , P (∃ τ ∈ [0, t], s.t. sτl1 = sτl2) (2)

Definition 5 (Estimator). Given the positions of N
random walks at time t, {stl}Nl=1, we define the following
estimator for the invariant distribution π.

π̂N (i) ,

∣∣{l : l ∈ [N], stl = i}
∣∣

N
=
c(i)

N
(3)

4

Here c(i) refers to the tally maintained by the FrogWild!
vertex program.

Now we can state the main result. Here we give a guaran-
tee for the quality of the solution furnished by our algorithm.

Theorem 1 (Main Theorem). Consider N frogs fol-
lowing the FrogWild! process (Section 2.2), under the era-
sure model of Definition 8. The frogs start at independent
locations, distributed uniformly and stop after a geometric
number of steps or, at most, t steps. The estimator π̂N
(Definition 5), captures mass close to the optimal. Specifi-
cally, with probability at least 1− δ,

µk(π̂N) ≥ µk(π)− ε,

where

ε <

√
(1− pT)t+1

pT
+

√
k

δ

[
1

N
+ (1− p2s)p∩(t)

]
. (4)

Remark 6 (Scaling). The result in Theorem 1 imme-
diately implies the following scaling for the number of itera-
tions and frogs respectively. They both depend on the max-
imum captured mass possible, µk(π) and are sufficient for
making the error, ε, of the same order as µk(π).

t = O

(
log

1

µk(π)

)
, N = O

(
k

µk(π)2

)
The proof of Theorem 1 is deferred to Appendix B.1.

The guaranteed accuracy via this result also depends on
the probability that two walkers will intersect. Via a simple
argument, that probability is the same as the meeting prob-
ability for independent walks. The next theorem calculates
this probability.

Theorem 2 (Intersection Probability). Consider
two independent random walks obeying the same ergodic tran-
sition probability matrix, Q with invariant distribution π, as
described in Definition 1. Furthermore, assume that both of
them are initially distributed uniformly over the state space
of size n. The probability that they meet within t steps, is
bounded as follows,

p∩(t) ≤ 1

n
+
t‖π‖∞
pT

,

where ‖π‖∞, denotes the maximal element of the vector π.

The proof is based on the observation that the l∞ norm of
a distribution controls the probability that two independent
samples coincide. We show that for all steps of the random
walk, that norm is controlled by the l∞ norm of π. We defer
the full proof to Appendix B.2.

A number of studies, give experimental evidence (e.g. [8])
suggesting that PageRank values for the web graph follow
a power-law distribution with parameter approximately θ =
2.2. That is true for the tail of the distribution – the largest
values, hence of interest to us here – regardless of the choice
of pT . The following proposition bounds the value of the
heaviest PageRank value, ‖π‖∞.

Proposition 7 (Max of Power-Law Distribution).
Let π ∈ ∆n−1 follow a power-law distribution with param-
eter θ and minimum value pT /n. Its maximum element,

‖π‖∞, is at most n−γ , with probability at least 1− cnγ−
1
θ−1 ,

for some universal constant c.

Assuming θ = 2.2 and picking, for example, γ = 0.5, we get
that

P(‖π‖∞ > 1/
√
n) ≤ cn−1/3.

This implies that with probability at least 1 − cn−1/3 the
meeting probability is bounded as follows.

p∩(t) ≤ 1

n
+

t

pT
√
n
.

One would usually take a number of steps t that are either
constant or logarithmic with respect to the graph size n.
This implies that for many reasonable choices of set size k
and acceptable probability of failure δ, the meeting proba-
bility vanishes as n grows. Then we can make the second
term of the error in (4) arbitrarily small by controlling the
number of frogs, N . The proof for Proposition 7 is deferred
to Appendix B.3.

2.4 Prior Work
There is a very large body of work on computing and

approximating PageRank on different computation models
(e.g. see [10, 13, 30, 14, 4] and references therein). To the
best of our knowledge, our work is the first to specifically de-
sign an approximation algorithm for high-PageRank nodes
for graph engines. Another line of work looks for Personal-
ized PageRank (PPR) scores. This quantifies the influence
an arbitrary node i has on another node j, cf. recent work
[22] and discussion therein. In [6], the top-k approxima-
tion of PPR is studied. However, PPR is not applicable in
our case, as we are looking for an answer close to a global
optimum.

In [5], a random-walks-based algorithm is proposed. The
authors provide some insightful analysis of different varia-
tions of the algorithm. They show that starting a single
walker from every node, is sufficient to achieve a good global
approximation. We focus on capturing a few nodes with a lot
of mass, hence we can get away with orderwise much fewer
frogs than O(n). This is important for achieving low net-
work traffic when the algorithm is executed on a distributed
graph framework. Figure 8 shows linear reduction in net-
work traffic when the number of initial walkers decreases.
Furthermore, our method does not require waiting for the
last frog to naturally expire (note that the geometric distri-
bution has infinite support). We impose a very short time
cut-off, t, and exactly analyze the penalty in captured mass
we pay for it in Theorem 1.

One natural question is how our algorithm compares to,
or can be complemented by, graph sparsification techniques.
One issue here is that graph sparsification crucially depends
on the similarity metric used. Well-studied properties that
are preserved by different sparsification methods involve lengths
of shortest paths between vertices (such sparsifiers are called
Spanners, see e.g. [28]), cuts between subsets of vertices [9]
and more generally quadratic forms of the graph laplacian
[33, 7], see [7] and references therein for a recent overview.
To the best of our knowledge, there are no known graph
sparsification techniques that preserve vertex PageRank.

One natural heuristic that one may consider is to inde-
pendently flip a coin and delete each edge of the graph with
some probability r. Note that this is crucially different from
spectral sparsifiers [33, 7] that choose these probabilities us-
ing a process that is already more complicated than esti-
mating PageRank. This simple heuristic of independently

5

deleting edges indeed accelerates the estimation process for
high-PageRank vertices. We compare FrogWild to this
uniform sparsification process in Figure 5. We present here
results for 2 iterations of the GraphLab PR on the spar-
sified graph. Note that running only one iteration is not
interesting since it actually estimates only the in-degree of
a node which is known in advance (i.e., just after the graph
loading) in a graph engine framework. It can be seen in
Figure 5 that even when only two iterations are used on
the sparsified graph the running time is significantly worse
compared to FrogWild and the accuracy is comparable.

Our base-line comparisons come from the graph frame-
work papers since PageRank is a standard benchmark for
running-time, network and other computations. Our imple-
mentation is on GraphLab (PowerGraph) and significantly
outperforms the built-in PageRank algorithm. This algo-
rithm is already shown in [17, 31] to be significantly more
efficient compared to other frameworks like Hadoop, Spark,
Giraph etc.

3. EXPERIMENTS
In this section we compare the performance of our algo-

rithm to the PageRank algorithm shipped with GraphLab
v2.2 (PowerGraph) [23]. The fact that GraphLab is the
fastest distributed engine for PageRank is established ex-
perimentally in [31]. We focus on two algorithms: the basic
built-in algorithm provided as part of the GraphLab graph
analytics toolkit, referred to here as GraphLab PR, and
FrogWild. Since we are looking for a top-k approximation
and GraphLab PR is meant to find the entire PageRank
vector, we only run it for a small number of iterations (usu-
ally 2 are sufficient). This gives us a good top-k approxi-
mation and is much faster than running the algorithm until
convergence. We also fine tune the algorithm’s tolerance
parameter to get a good but fast approximation.

We compare several performance metrics, namely: run-
ning time, network usage, and accuracy. The metrics do
not include time and network usage required for loading the
graph into GraphLab (known as the ingress time). They
reflect only the execution stage.

3.1 The Systems
We perform experiments on two systems. The first system

is a cluster of 20 virtual machines, created using VirtualBox
4.3 [34] on a single physical server. The server is based on an
IntelR© XeonR© CPU E5-1620 with 4 cores at 3.6 GHz, and
16 GB of RAM. The second system, comprises of a cluster
of up to 24 EC2 machines on AWS (Amazon web services)
[3]. We use m3.xlarge instances, based on IntelR© XeonR©

CPU E5-2670 with 4 vCPUs and 15 GB RAM.

3.2 The Data
For the VirtualBox system, we use the LiveJournal graph

[21] with 4.8M vertices and 69M edges. For the AWS system,
in addition to the LiveJournal graph, we use the Twitter
graph [20] which has 41.6M nodes and 1.4B edges.

3.3 Implementation
FrogWild is implemented on the standard GAS (gather,

apply, scatter) model. We implement init(), apply(), and
scatter(). The purpose of init() is to collect the random
walks sent to the node by its neighbors using scatter() in

the previous iteration. In the first iteration, init() gener-
ates a random fraction of the initial total number of walkers.
This implies that the initial walker locations are randomly
distributed across nodes. FrogWild requires the length of
random walks to be geometrically distributed (see Section
2.2). For the sake of efficiency, we impose an upper bound on
the length of random walks. The algorithm is executed for
the constant number of iterations (experiments show good
results with even 3 iterations) after which all the random
walks are stopped simultaneously. The apply() function
is responsible for keeping track of the number of walkers
that have stopped on each vertex and scatter() distributes
the walkers still alive to the neighbors of the vertex. The
scatter() phase is the most challenging part of the imple-
mentation. In order to reduce information exchange between
machines, we use a couple of ideas.

First, we notice that random walks do not have iden-
tity. Hence, random walks destined for the same neighbor
can be combined into a single message. The second opti-
mization and significant part of our work is modifying the
GraphLab engine. The recent versions of GraphLab (since
PowerGraph) partition the graph by splitting vertices. As a
consequence, the engine will need to synchronize all the mir-
rors of a vertex over the network a number of times during
each GAS cycle.

When running a few random walks, only a handful of
neighbors end up receiving walkers. For this reason, syn-
chronizing all mirrors can be very wasteful. We deal with
that by implementing randomized synchronization. We ex-
pose parameter ps ∈ [0, 1] to the user as a small extension to
the GraphLab API. It describes the fraction of replicas that
will be synchronized. Replicas not synchronized remain idle
for the upcoming scatter phase. The above edits in the en-
gine are only a matter of a few (about 10) lines of code. Note
that the ps parameter is completely optional, i.e., setting it
to 1 will result in the original engine operation. Hence, other
analytic workloads will not be affected. However, any ran-
dom walk or “gossip” style algorithm (that sends a single
messages to a random subset of its neighbors) can benefit
by exploiting ps. Our modification of the GraphLab engine
as well as the FrogWild vertex program can be found in
[11].

3.4 Results
FrogWild is significantly faster and uses less network

and CPU compared to GraphLab PR. Let us start with
the Twitter graph and the AWS system. In Figure 1(a) we
see that, while GraphLab PR takes about 7.5 seconds per
iteration (for 12 nodes), FrogWild takes less than 1 sec,
achieving more than a 7x speedup. Reducing the value of ps
decreases the running time. We see a similar picture when
we study the total running time of the algorithms in Figure
1(b)).

We plot network performance in Figure 1(c). We get a
1000x improvement compared to the exact GraphLab PR,
and more than 10x with respect to doing 1 or 2 iterations
of GraphLab PR. In Figure 1(d) we can see that the total
CPU usage reported by the engine is also much lower for
FrogWild.

We now turn to compare the approximation metrics for
the PageRank algorithm. For various k, we check the two
accuracy metrics: Mass captured (Figure 2(a)) and the Ex-
act identification (Figure 2(b)). Mass captured – is the total

6

12 nodes 16 nodes 20 nodes 24 nodes
10-1

100

101

Ti
m

e
pe

r i
te

ra
tio

n
(s

)
Twitter, AWS, 800K rw, 4 iters

GraphLab PR exact

FrogWild, Ps=1

FrogWild, Ps=0.7

FrogWild, Ps=0.4

FrogWild, Ps=0.1

12 nodes 16 nodes 20 nodes 24 nodes
100

101

102

103

To
ta

l t
im

e
(s

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

GraphLab PR 2 ites

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.1

(a) (b)

12 nodes 16 nodes 20 nodes 24 nodes107

108

109

1010

1011

1012

N
et

w
or

k
se

nt
 (b

yt
es

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

GraphLab PR 2 ites

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.1

12 nodes 16 nodes 20 nodes 24 nodes
101

102

103

104

C
PU

 u
sa

ge
 (s

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

GraphLab PR 2 ites

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.1

(c) (d)

Figure 1: PageRank performance for various number of nodes. Graph: Twitter; system: AWS (Amazon Web

Services); FrogWild parameters: 800K initial random walks and 4 iterations. (a) – Running time per iteration. (b)

– Total running time of the algorithms. (c) – Total network bytes sent by the algorithm during the execution (does

not include ingress time). (d) – Total CPU usage time. Notice, this metric may be larger than the total running time

since many CPUs run in parallel.

PageRank that the reported top-k vertices worth in the ex-
act ranking. Exact identification – is the number of vertices
in the intersection of the reported top-k and the exact top-k
lists. We can see that the approximation achieved by the
FrogWild for ps = 1 and ps = 0.7 always outperforms
the GraphLab PR with 1 iteration. The approximation
achieved by the FrogWild with ps = 0.4 is relatively good
for the both metrics, and with ps = 0.1 is reasonable for the
Mass captured metrics.

In Figure 3 we can see the tradeoff between the accuracy,
total running time, and the network usage. The performance
of FrogWild is evaluated for various number of iterations
and the values of ps. The results show that with the accu-
racy comparable to GraphLab PR, FrogWild has much
less running time and network usage. Figure 4 illustrates
how much network traffic we save using FrogWild. The
area of each circle is proportional to the number of bytes
sent by each algorithm.

We also compare FrogWild to an approximation strat-
egy that uses a simple sparsification technique described in
Section 2.4. First, the graph is sparsified by deleting each
edge with probability r, then GraphLab PR is executed.
In Figure 5, we can see that FrogWild outperforms this
approach in terms running time while achieving comparable
accuracy.

Finally, we plot results for the LiveJournal graph on the
VirtualBox system. Figures 6(a,b) show the effect of the
number of walkers, N , and the number of iterations for
FrogWild on the achieved accuracy. Good accuracy and
running time (see Figure 6(c,d)) are achieved for 800K ini-
tial random walks and 4 iterations of FrogWild. Similar
to the Twitter graph, also for the LiveJournal graph we can
see, in Figure 7, that our algorithm is faster and uses much
less network, while still maintaining good PageRank accu-
racy. By varying the number of initial random walks and
the number of iterations we can fine-tune the FrogWild

7

k=30 k=100 k=300 k=1000
0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

Twitter, AWS, 16 nodes, 800K rw, 4 iters
GraphLab PR 2 iters

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.7

FrogWild, Ps=0.4

FrogWild, Ps=0.1

k=30 k=100 k=300 k=1000
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y
- E

xa
ct

 id
en

tif
ic

at
io

n

Twitter, AWS, 16 nodes, 800K rw, 4 iters
GraphLab PR 2 iters

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.7

FrogWild, Ps=0.4

FrogWild, Ps=0.1

(a) (b)

Figure 2: PageRank approximation accuracy for various number of top-k PageRank vertices. Graph: Twitter; system:

AWS (Amazon Web Services) with 16 nodes; FrogWild parameters: 800K initial random walks and 4 iterations. (a)

– Mass captured. The total PageRank that the reported top-k vertices worth in the exact ranking. (b) – Exact

identification. The number of vertices in the intersection of the reported top-k and the exact top-k lists.

100 101 102 103

Total time (s)

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

107 108 109 1010 1011 1012

Total network (bytes)

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
ur

ac
y

- M
as

s
ca

pt
ur

ed
 (k

=1
00

)
Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

(a) (b)

Figure 3: PageRank approximation accuracy with the “Mass captured” metric for top-100 vertices. Graph: Twitter;

system: AWS (Amazon Web Services) with 24 nodes; FrogWild parameters: 800K initial random walks. (a) - Accuracy

versus total running time. (b) - Accuracy versus total network bytes sent.

for the optimal accuracy-speed tradeoff.
Interestingly, for both graphs (Twitter and LiveJournal),

reasonable parameters are: 800K initial random walks and
4 iterations, despite the order of magnitude difference in
the graph sizes. This implies slow growth for the necessary
number of frogs with respect to the size of the graph. This
scaling behavior is tough to check in practice, but it is ex-
plained by our analysis. Specifically, Remark 6 shows that

the number of frogs should scale as N = O
(

k
µk(π)

2

)
.

4. REFERENCES
[1] Teradata. http://www.teradata.com/Resources/

Videos/Grow-Loyalty-of-Influential-Customers.
Accessed: 2014-11-30.

[2] A. Agarwal and S. Chakrabarti. Learning random
walks to rank nodes in graphs. In Proceedings of the
24th international conference on Machine learning,
pages 9–16. ACM, 2007.

[3] Amazon web services. http://aws.amazon.com, 2014.

[4] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S.
Mirrokni, and S.-H. Teng. Local computation of
pagerank contributions. In Algorithms and Models for
the Web-Graph, pages 150–165. Springer, 2007.

[5] K. Avrachenkov, N. Litvak, D. Nemirovsky, and
N. Osipova. Monte carlo methods in pagerank
computation: When one iteration is sufficient. SIAM
J. Numer. Anal., 45(2):890–904, Feb. 2007.

[6] K. Avrachenkov, N. Litvak, D. Nemirovsky,

8

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

- M
as

s
ca

pt
ur

ed
 (k

=1
00

)
LiveJournal, VBox, 20 nodes, 4 iters

FrogWild, 1400000 rw

FrogWild, 1200000 rw

FrogWild, 1000000 rw

FrogWild, 800000 rw

FrogWild, 600000 rw

FrogWild, 400000 rw

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 800K rw
FrogWild, 6 iters

FrogWild, 5 iters

FrogWild, 4 iters

FrogWild, 3 iters

FrogWild, 2 iters

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

(a) (b)

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1
100

101

To
ta

l t
im

e
(s

)

218

LiveJournal, VBox, 20 nodes, 4 iters
FrogWild, 1400000 rw

FrogWild, 1200000 rw

FrogWild, 1000000 rw

FrogWild, 800000 rw

FrogWild, 600000 rw

FrogWild, 400000 rw

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1
100

101
To

ta
l t

im
e

(s
)

218

LiveJournal, VBox, 20 nodes, 800K rw
FrogWild, 6 iters

FrogWild, 5 iters

FrogWild, 4 iters

FrogWild, 3 iters

FrogWild, 2 iters

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

(c) (d)

Figure 6: Graph: LiveJournal; system: VirtualBox with 20 nodes. (a) – Accuracy for various number of initial

random walks in the FrogWild (with 4 iterations). (b) – Accuracy for various number of iterations of FrogWild (with

800K initial random walks). (c) – Total running time for various number of initial random walks in the FrogWild (with

4 iterations). (d) – Total running time for various number of iterations of FrogWild (with 800K initial random walks).

100 101 102 103

Total time (s)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

107 108 109 1010 1011

Total network (bytes)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

(a) (b)

Figure 7: Graph: LiveJournal; system: VirtualBox with 20 nodes; FrogWild parameters: 800K initial random walks.

(a) – Accuracy versus total running time. (b) – Accuracy versus total network bytes sent.

9

100 101 102 103

Total time (s)

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
ur

ac
y

- M
as

s
ca

pt
ur

ed
 (k

=1
00

)
Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

Figure 4: Accuracy versus total running time. Graph:

Twitter; system: AWS (Amazon Web Services) with 24

nodes; FrogWild parameters: 800K initial random walks.

The area of each circle is proportional to the total net-

work bytes sent by the specific algorithm.

0 5 10 15 20 25 30
Total time (s)

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

Twitter, AWS, 12 nodes, 800K rw

GraphLab PR iters=2, q=(0.4,0.7,1)

FrogWild iters=4, Ps=(0.4,0.7,1)

Figure 5: Accuracy versus total running time. Graph:

Twitter; system: AWS (Amazon Web Services) with 12

nodes; FrogWild parameters: 800K initial random walks.

q = 1 − r is the probability of keeping an edge in the

sparsification process.

E. Smirnova, and M. Sokol. Monte carlo methods for
top-k personalized pagerank lists and name
disambiguation. CoRR, abs/1008.3775, 2010.

[7] J. Batson, D. A. Spielman, N. Srivastava, and S.-H.
Teng. Spectral sparsification of graphs: Theory and
algorithms. Commun. ACM, 56(8):87–94, Aug. 2013.

[8] L. Becchetti and C. Castillo. The distribution of
pagerank follows a power-law only for particular
values of the damping factor. In Proceedings of the
15th international conference on World Wide Web,
pages 941–942. ACM, 2006.

[9] A. A. Benczúr and D. R. Karger. Approximating s-t

minimum cuts in Õ(n2) time. In Proceedings of the

400K 600K 800K 1000K 1200K 1400K
Number of initial random walks

1.0

1.5

2.0

2.5

3.0

3.5

N
et

w
or

k
se

nt
 (b

yt
es

)

1e8 LiveJournal, VBox, 20 nodes, 4 iters

FrogWild Ps=1

Figure 8: Network usage of FrogWild versus the num-

ber of initial random walks. Graph: LiveJournal; sys-

tem: VirtualBox with 20 nodes; FrogWild parameters:

4 iterations.

Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 47–55, New York, NY,
USA, 1996. ACM.

[10] P. Berkhin. A survey on pagerank computing. Internet
Mathematics, 2(1):73–120, 2005.

[11] M. Borokhovich and I. Mitliagkas. FrogWild! code
repository.
https://github.com/michaelbor/frogwild, 2014.
Accessed: 2014-10-30.

[12] P. Bremaud. Markov chains: Gibbs fields, Monte Carlo
simulation, and queues, volume 31. springer, 1999.

[13] A. Z. Broder, R. Lempel, F. Maghoul, and
J. Pedersen. Efficient pagerank approximation via
graph aggregation. Information Retrieval,
9(2):123–138, 2006.

[14] A. Das Sarma, D. Nanongkai, G. Pandurangan, and
P. Tetali. Distributed random walks. Journal of the
ACM (JACM), 60(1):2, 2013.

[15] L. Eldén. A note on the eigenvalues of the google
matrix. arXiv preprint math/0401177, 2004.

[16] S. Fortunato and A. Flammini. Random walks on
directed networks: the case of pagerank. International
Journal of Bifurcation and Chaos, 17(07):2343–2353,
2007.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, volume 12,
page 2, 2012.

[18] T. Haveliwala and S. Kamvar. The second eigenvalue
of the google matrix. Stanford University Technical
Report, 2003.

[19] J. Heidemann, M. Klier, and F. Probst. Identifying
key users in online social networks: A pagerank based
approach. In ICIS’10, 2010.

[20] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW
’10: Proceedings of the 19th international conference
on World wide web, pages 591–600, New York, NY,

10

USA, 2010. ACM.

[21] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[22] P. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri.
Fast-ppr: Scaling personalized pagerank estimation for
large graphs. arXiv preprint arXiv:1404.3181, 2014.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence
(UAI), July 2010.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135–146. ACM, 2010.

[25] R. Mihalcea and P. Tarau. Textrank: Bringing order
into texts. Association for Computational Linguistics,
2004.

[26] M. E. Newman. Power laws, pareto distributions and
zipf’s law. Contemporary physics, 46(5):323–351, 2005.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
1999.

[28] D. Peleg and J. D. Ullman. An optimal synchronizer
for the hypercube. In Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed
Computing, PODC ’87, pages 77–85, New York, NY,
USA, 1987. ACM.

[29] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems, pages 693–701, 2011.

[30] A. D. Sarma, S. Gollapudi, and R. Panigrahy.
Estimating pagerank on graph streams. Journal of the
ACM (JACM), 58(3):13, 2011.

[31] N. Satish, N. Sundaram, M. A. Patwary, J. Seo,
J. Park, M. A. Hassaan, S. Sengupta, Z. Yin, and
P. Dubey. Navigating the maze of graph analytics
frameworks using massive graph datasets.

[32] S. Serra-Capizzano. Jordan canonical form of the
google matrix: a potential contribution to the
pagerank computation. SIAM Journal on Matrix
Analysis and Applications, 27(2):305–312, 2005.

[33] D. Spielman and N. Srivastava. Graph sparsification
by effective resistances. SIAM Journal on Computing,
40(6):1913–1926, 2011.

[34] VirtualBox 4.3. www.virtualbox.org, 2014.

[35] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and
I. Stoica. Graphx: A resilient distributed graph
system on spark. In First International Workshop on
Graph Data Management Experiences and Systems,
page 2. ACM, 2013.

APPENDIX
A. EDGE ERASURE MODEL

Definition 8 (Edge Erasure Model). An edge era-
sure model is a process that is independent from the random
walks (up to time t) and temporarily erases a subset of all

edges at time t. The event Eti,j represents the erasure of
edge (i, j) from the graph for time t. The edge is not per-
manently removed from the graph, it is just disabled and
considered again in the next step. The edge erasure models
we study satisfy the following properties.

1. Edges are erased independently for different vertices,

P(Eti,j , E
t
i,k) = P(Eti,j)P(Eti,k)

and across time,

P(Eti,j , E
s
i,j) = P(Eti,j)P(Esi,j).

2. Each outgoing edge is preserved (not erased) with prob-
ability at least ps.

P(Eti,j) ≥ ps

3. Erasures do not exhibit significant negative correlation.
Specifically,

P(Eti,j |Eti,k) ≥ ps.

4. Erasures in a neighbourhood are symmetric. Any sub-
set of out-going edges of vertex i, will be erased with
exactly the same probability as another subset of the
same cardinality.

The main two edge erasure models we consider are de-
scribed here. They both satisfy all required properties. Our
theory holds for both1, but in our implementation and ex-
periments we use ”At Least One Out-Edge Per Node.”

Example 9 (Independent Erasures). Every edge is
preserved independently with probability ps.

Example 10 (At Least One Out-Edge Per Node).
This edge erasure model, decides all erasures for node i in-
dependently, like Independent Erasures, but if all out-going
edges for node i are erased, it draws and enables one of them
uniformly at random.

B. THEOREM PROOFS

B.1 Proof of Theorem 1
In this section we provide a complete proof of our main

results. We start from simple processes and slowly introduce
the analytical intricacies of our system one-by-one giving
guarantees on the performance of each stage.

Process 11 (Fixed Step). Independent walkers start
on nodes selected uniformly at random and perform random
walks on the augmented graph. This means that teleporta-
tion happens with probability pT and the walk is described
by the transition probability matrix (TPM) Q, as defined
in Section 2.1. Each walker performs exactly t steps before
yielding a sample. The number of walkers tends to infinity.

Before we talk about the convergence properties of this
Markov chain, we need some definitions.

Definition 12. The χ2-contrast χ2(α;β) of α with re-
spect to β is defined by

χ2(α;β) =
∑
i

(α(i)− β(i))2

β(i)
.

1 Independent Erasures can lose some walkers, when it tem-
porarily leads to some nodes having zero out-degree.

11

Lemma 13. Let π ∈ ∆n−1 a distribution satisfying

min
i
π(i) ≥ c

n

for constant c ≤ 1, and let u ∈ ∆n−1 denote the uniform
distribution. Then, χ2(u;π) ≤

(
1−c
c

)
.

Proof.

χ2(u;π) =
∑
i

(1/n− π(i))2

π(i)
=
∑
i

(
1

n2π(i)
− 1

n

)
=

1

n

∑
i

1− nπ(i)

nπ(i)
≤ 1

n

∑
i

1− c
c

=
1− c
c

Here we used the assumed lower bound on π(i) and the fact
that (1− x)/x is decreasing in x.

Lemma 14. Let πt denote the distribution of the walkers
after t steps. Its χ2-divergence with respect to the PageRank
vector, π, is

χ2(πt;π) ≤
(

1− pT
pT

)
(1− pT)t.

Proof. Since Q is ergodic (but non-reversible) we can
use the contrast bound in [12], which gives us

χ2(πt;π) ≤ λt2(Q̃Q)χ2(π0;π),

where Q̃ = DQ′D−1, for D = diag(π), is called the mul-
tiplicative reversibilization of Q. We want an upper bound
on the second largest eigenvalue of Q̃Q = DQ′D−1Q. From
the Perron-Frobenius theorem, we know that λ1(Q) = 1 and
from [18, 15, 32], |λ2(Q)| < 1 − pT . Matrix Q is similar to

Q̃ = DQ′D−1, so they have the same spectrum. From this
we get the bound

|λ2(Q̃Q)| ≤ 1− pT .

The starting distribution π0 is assumed to be uniform and
every element of the PageRank vector is lower bounded by
pT /n. From Lemma 13, we get

χ2(π0;π) ≤
(

1− pT
pT

)
,

and putting everything together we get the statement.

Process 15 (Truncated Geometric). Independent
walkers start on nodes selected uniformly at random and per-
form random walks on the original graph. This means that
there is no teleportation and the walk is described by the
TPM P as defined in Section 2.1. Each walker performs a
random number of steps before yielding a sample. Specifi-
cally, the number of steps follows a geometric distribution
with parameter pT . Any walkers still active after t steps are
stopped and their positions are acquired as samples. This
means that the number of steps is given by the minimum of
t and a geometric random variable with parameter pT . The
number of walkers tends to infinity.

Lemma 16. The samples acquired from Process 11 and
Process 15 follow the exact same distribution.

Proof. Let πt denote the distribution of the walk after t
steps according to Q (Process 11) and π′t denote the distri-
bution of the samples provided by the truncated geometric

process (Process 15). Note that the both have the same uni-
form starting distribution π0 = π′0 = u = 1n×1/n. For the
latter process, the sampling distribution is

π′t =

t∑
τ=0

pT (1− pT)τP τu+ (1− pT)t+1P tu. (5)

The last term corresponds to the cut-off we impose at time
t. Now consider the definition of the TPM Q (Definition 1).
The Markov chain described by Q, teleports at each steps
with probability pT ; otherwise, it just proceeds according
to the TPM P . With every teleportation, the walker starts
from the uniform distribution, u – any progress made so far
is completely ”forgotten.” Therefore, we just need to focus
on the epoch between the last teleportation and the cut-off
time t. The times between teleportation events are geomet-
rically distributed with parameter pT . The teleportation
process is memory-less and reversible. Starting from time t
and looking backwards in time, the last teleportation event
is a geometric number of steps away, and with probability
(1 − pT)t+1 it happens before the starting time 0. In that
case we know that no teleportation happens in [0, t]. The
samples acquired from this process are given by

πt =

t∑
τ=0

pT (1− pT)τP τu+ (1− pT)t+1P tu, (6)

which is exactly the distribution for Process 15 given in
(5).

Lemma 17 (Mixing Loss). Let πt ∈ ∆n−1 denote the
distribution of the samples acquired through Process 15. The
mass it captures (Definition 2) is lower-bounded as follows.

µk(πt) ≥ µk(π)−

√
(1− pT)t+1

pT

Proof. Let us define δi = πti − πi. First we show that

µk(πt) ≥ µk(π)− ‖π − πt‖1. (7)

To see this, first consider the case when δ1 = −δ2 and δi = 0
for i = 3, ..., n. The maximum amount of mass that can be
missed by πt, in this case, is |δ1|+ |δ2|. This happens when
π1 and π2 are exactly |δ1| + |δ2| apart and are flipped in
the ordering by πt. This argument generalizes to give us
(7). Now assume that the χ2-divergence of πt with respect
to the PageRank vector π is bounded by ε2. Now using a
variational argument and the KKT conditions we can show
that setting δi = πiε for all i gives the maximum possible l1
error:

||π − πt||1 ≤ ε =
√
χ2(πt;π). (8)

For another proof using the Cauchy-Schwarz inequality, see
[12]. Finally, combining (8) with (7) and the results from
Lemma 16 and 14 gives us the statement.

Lemma 18 (Sampling Loss). Let π̂N be the estimator
of Definition 5 using N samples from the FrogWild! sys-
tem. This is essentially, Process 15 with the added complica-
tion of random synchronization as explained in Section 2.2.
Also, let πt denote the sample distribution after t steps, as
defined in Lemma 16. The mass captured by this process is
lower bounded as follows, with probability at least 1− δ.

µk(π̂N) ≥ µk(πt)−

√
k

δ

[
1

N
+ (1− p2s)p∩(t)

]
,

12

Proof. In this proof, let xtl denote the individual (marginal)
walk distribution for walker l at time t. We know, that it fol-
lows the dynamics xt+1

l = Pxtl , for all l ∈ [N], i.e. xtl = xt1.
First we show that ‖π̂N − xt1‖2 is small.

P(‖π̂N − xt1‖2 > ε) ≤ E[‖π̂N − xt1‖22]

ε2
(9)

Here we used Markov’s inequality. We use stl to denote the
position of walker l at time t as a vector. For example,
stl = ei, if walker l is at state i at time t. Now let us break
down the norm on the numerator of (9).

‖π̂N − xt1‖22 =

∥∥∥∥ 1

N

∑
l

(stl − xt1)

∥∥∥∥2
2

=
1

N2

∑
l

‖stl − xt1‖22 +
1

N2

∑
l6=k

(stl − xt1)′(stk − xt1)

(10)

For the diagonal terms we have:

E[‖stl − xt1‖22] =
∑
i∈[n]

E
[
‖stl − xt1‖22|stl = i

]
P(stl = i)

=
∑
i∈[n]

‖eti − xt1‖22xt1(i) = 1− ‖xt1‖22 ≤ 1 (11)

Under the edge erasures model, the trajectories of differ-
ent walkers are not generally independent. For example, if
they happen to meet, they are likely to make the same deci-
sion for their next step, since they are faced with the same
edge erasures. Now we prove that even when they meet, we
can consider them to be independent with some probability
that depends on ps.

Consider the position processes for two walkers, {st1}t and
{st2}t. At each step t and node i a number of out-going
edges are erased. Any walkers on i, will choose uniformly
at random from the remaining edges. Now consider this
alternative process.

Process 19 (Blocking Walk). A blocking walk on the
graph under the erasure model, follows these steps.

1. Walker l finds herself on node i at time t.

2. Walker l draws her next state uniformly from the full
set of out-going edges.

w ∼ Uniform(No(i))

3. If the edge (i, w) is erased at time t, the walker cannot
traverse it. We call this event a block and denote it by
Btl . In the event of a block:

• Walker redraws her next step from the out-going
edges of i not erased at time t.

• Otherwise, w is used as the next state.

A blocking walk is exactly equivalent to our original pro-
cess; walkers end up picking a destination uniformly at ran-
dom among the edges not erased. From now on we focus
on this description of our original process. We use the same
notation: {stl}t for the position process and {xtl}t for the
distribution at time t.

Let us focus on just two walkers, {st1}t and {st2}t and
consider a third process: two independent random walks on
the same graph. We assume that these walks operate on the
full graph, i.e. no edges are erased. We denote their positions

by {vt1}t and {vt2}t and their marginal distributions by {zt1}t
and {zt2}t.

Definition 20 (Time of First Interference). For two
blocking walks, τI denotes the earliest time at which they
meet and at least one of them experiences blocking.

τI = min
{
t : {st1 = st2} ∩ (Bt1 ∪Bt2)

}
We call this quantity the time of first interference.

Lemma 21 (Process equivalence). For two walkers,
the blocking walk and the independent walk are identical until
the time of first interference. That is, assuming the same
starting distributions, x01 = z01 and x02 = z02 , then

xt1 = zt1 and xt2 = zt2 ∀t ≤ τI .

Proof. The two processes are equivalent for as long as
the blocking walkers make independent decisions effectively
picking uniformly from the full set of edges (before erasures).
From the independence in erasures across time and vertices
in Definition 8, as long as the two walkers do not meet, they
are making an independent choices. Furthermore, since era-
sures are symmetric, the walkers will be effectively choosing
uniformly over the full set of out-going edges.

Now consider any time t that the blocking walkers meet.
As long as neither of them blocks, they are by definition
taking independent steps uniformly over the set of all outgo-
ing edges, maintaining equivalence to the independent walks
process. This concludes the proof.

Lemma 22. Let all walkers start from the uniform dis-
tribution. The probability that the time of first interference
comes before time t is upper bounded as follows. P(τI ≤ t) ≤
(1− p2s)p∩(t)

Proof. Let Mt be the event of a meeting at time t,
Mt ,

{
st1 = st2

}
. In the proof of Theorem 2, we estab-

lish that P(Mt) ≤ ρt/n,where ρ is the maximum row sum of
the transition matrix P . Now denote the event of an inter-
ference at time t as follows. It ,Mt ∩ (Bt1 ∪Bt2), where Bt1
denotes the event of blocking, as described in Definition 19.
Now,

P(It) = P(Mt ∩ (Bt1 ∪Bt2)) = P(Bt1 ∪Bt2|Mt)p∩(t).

For the probability of a block given that the walkers meet
at time t,

P(Bt1 ∪Bt2|Mt) = 1− P(Bt1 ∩Bt2|Mt)

= 1− P(Bt2|Bt1,Mt)P(Bt1 |Mt) ≤ 1− p2s.

To get the last inequality we used, from Definition 8, the
lower bound on the probability that an edge is not erased,
and the lack of negative correlations in the erasures.

Combining the above results, we get

P(τI ≤ t) = P

(
t∑

τ=1

I{Iτ} ≥ 1

)
≤ E

[
t∑

τ=1

I{Iτ}

]
=

t∑
τ=1

P(Iτ)

≤
t∑

τ=1

(1− p2s)P(Mτ) =
1− p2s
n

t∑
τ=1

ρτ = (1− p2s)p∩(t)

which proves the statement.

13

Now we can bound the off-diagonal terms in (11).

E
[
(stl − xt1)′(stk − xt1)

]
=E
[
(stl − xt1)′(stk − xt1)

∣∣τI ≤ t]P(τI ≤ t)

+ E
[
(stl − xt1)′(stk − xt1)

∣∣τI > t

]
P(τI > t)

In the second term, the case when l, k have not interfered, by
Lemma 21, the trajectories are independent and the cross-
covariance is 0. In the first term, the cross-covariance is
maximized when stl = stk. That is,

E
[
(stl − xt1)′(stk − xt1)

∣∣τI ≤ t] ≤ E[‖stl − xt1‖22] ≤ 1

From this we get

E
[
(stl − xt1)′(stk − xt1)

]
≤ (1− p2s)p∩(t), (12)

and in combination with (11), we get from (10) that

E
[
‖π̂N − xt1‖22

]
≤ 1

N
+

(N − 1)(1− p2s)p∩(t)

N
.

Finally, we can plug this into (9), and since all marginals xtl
are the same, and denoted by πt, we get

P(‖π̂N − πt‖2 > ε) ≤ 1 + (1− p2s)p∩(t)(N − 1)

Nε2
. (13)

Let πt
∣∣
S

denote the restriction of the vector πt to the set

S. That is, πt
∣∣
S

(i) = πt(i) if i ∈ S and 0 otherwise. Now
we show that for any set S of cardinality k,

|πt(S)− π̂N (S)| ≤ ‖(πt − π̂N)
∣∣
S
‖1 ≤

√
k‖(πt − π̂N)

∣∣
S
‖2

≤
√
k‖πt − π̂N‖2 (14)

Here we used the fact that for k-length vector x, ‖x‖1 ≤√
k‖x‖2 and ‖x

∣∣
S
‖ ≤ ‖x‖. We define the top-k sets

Ŝ∗ = argmaxS⊂[n],|S|=kπ̂N (S)

S∗ = argmaxS⊂[n],|S|=kπ
t(S).

Per these definitions,

π̂N (Ŝ∗) = max
S⊂[n],|S|=k

π̂N (S)

≥ π̂N (S∗) ≥ πt(S∗)−
√
k‖πt − π̂N‖2. (15)

The last inequality is a consequence of (14). Now using the
inequality in (13) and denoting the LHS probability as δ, we
get the statement of Lemma 18.

Combing the results of Lemma 17 and Lemma 18, we
establish the main result, Theorem 1.

B.2 Proof of Theorem 2
Proof. Let u ∈ ∆n−1 denote the uniform distribution

over [n], i.e. ui = 1/n. The two walks start from the same
initial uniform distribution, u, and independently follow the
same law, Q. Hence, at time t they have the same marginal

distribution, pt = Qtu. From the definition of the aug-
mented transition probability matrix, Q, in Definition 1, we
get that

πi ≥
pT
n
, ∀i ∈ [n].

Equivalently, there exists a distribution q ∈ ∆n−1 such that

π = pTu+ (1− pT)q.

Now using this, along with the fact that π is the invariant
distribution associated with Q (i.e. π = Qtπ for all t ≥ 0)
we get that for any t ≥ 0,

‖π‖∞ = ‖Qtπ‖∞
= ‖QtpTu+Qt(1− pT)q‖∞
≥ pT ‖Qtu‖∞.

For the last inequality, we used the fact that Q and q contain
non-negative entries. Now we have a useful upper bound for
the maximal element of the walks’ distribution at time t.

‖pt‖∞ = ‖Qtu‖∞ ≤
‖π‖∞
pT

(16)

Let Mt be the indicator random variable for the event of a
meeting at time t.

Mt = I{walkers meet at time t}

Then, P(Mt = 1) =
∑n
i=1 p

t
ip
t
i = ‖pt‖22. Since p0 is the

uniform distribution, i.e. p0i = 1
n

for all i, then ‖p0‖22 = 1
n

.
We can also bound the l2 norm of the distribution at other
times. First, we upper bound the l2 norm by the l∞ norm.

‖p‖22 =
∑
i

p2i ≤
∑
i

pi‖p‖∞ = ‖p‖∞

Here we used the fact that pi ≥ 0 and
∑
pi = 1.

Now, combining the above results, we get

p∩(t) = P

(
t∑

τ=0

Mτ ≥ 1

)
≤ E

[
t∑

τ=0

Mτ

]
=

t∑
τ=0

E[Mτ]

=

t∑
τ=0

P(Mτ = 1) =

t∑
τ=0

‖pτ‖22 ≤
t∑

τ=0

‖pτ‖∞

≤ 1

n
+
t‖π‖∞
pT

.

For the last inequality, we used (16) for t ≥ 1 and ‖p0‖22 =
1/n. This proves the theorem statement.

B.3 Proof of Proposition 7
Proof. The expected maximum value of n independent

draws from a power-law distribution with parameter θ, is
shown in [26] to be

Exmax = O(n−
1
θ−1).

Simple application of Markov’s inequality, gives us the state-
ment.

14

	1 Introduction
	1.1 Notation

	2 Problem and Main Results
	2.1 Problem Formulation
	2.1.1 Top PageRank Elements

	2.2 Algorithm
	2.3 Main Result
	2.4 Prior Work

	3 Experiments
	3.1 The Systems
	3.2 The Data
	3.3 Implementation
	3.4 Results

	4 References
	A Edge Erasure Model
	B Theorem Proofs
	B.1 Proof of Theorem ??
	B.2 Proof of Theorem ??
	B.3 Proof of Proposition ??

