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Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

® Goal: Compute properties of G without storing entire graph.

® Computational constraints:

i) Limited working memory, e.g., O(n) rather than O(m)
ii) Access data sequentially
iii) Process each element quickly




Motivation

® T[raditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Interesting theoretical questions: How can we summarize graphs!?
Is there a notion of dimensionality reduction? VWhat types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

® TJechniques have wider applications: E.g., distributed settings,

»
Each machine runs stream

algorithm locally and sends state
of their algorithm.




Qutline

® This Ialk:

® Algorithms: Summarizing and computing on graph streams
® Extensions: Sliding windows, extra passes, annotations etc.

® Future Directions: Directed edges, ordering, stochastic graphs

® Accompanying Survey:

® |ncludes all references and further details.

® [eedback welcome...

\
http://people.cs.umass.edu/~mcgregor/papers/ | 3-graphsurvey.pdf
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Original Graph G Sparsifier Graph H

Sparsifiers: A subgraph H is a (1 +¢€) sparsifier for G if the
total weight of any cut is preserved up to a factor |+¢.

Thm: For any graph G there exists a (|+¢) sparsifier
with only O(&2n) edges. Can be constructed efficiently.

Thm: Can construct a (|+g)-sparsifier of a graph stream
using O(g2n polylog n) bits of space.




Sparsifier Algorithm
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® Algorithm: Recursively re-sparsify using any “offline” algorithm.

® Analysis: Let d=O(log n) be depth of the tree. Error of a final cut
estimate is (1+¢€)9 and we only store d sparsifiers simultaneously.

® Results extend to constructing spectral sparsifiers.




Spanners & Distances

Original Graph G Spanner Graph H

Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

® Thm:There is a O(n'*!t) space stream algorithm that
constructs a (2t-1)-spanner.




Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Lemma: All distances preserved up to a factor 2t-|
because an edge (u,v) was only ignored if there was
already a path of length at most 2t-| between u and v.

Lemma: At most (n'*"t) edges stored since shortest
cycle among stored edges has length at least 2t+1.




Other Algorithms

Matchings:

» Goal: Find large set of disjoint edges.

» Results: O(n)-space algorithms 2-approx. (unweighted) and
4.9 1 -approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

» Extensions: O(Il) approx. for various sub-modular problems.

Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Seshadhri’s talk coming up next...

Random Walks: Simulate length t random walks in +/t passes.

Other: Minimum spanning trees, bipartiteness, finding dense
components, correlation clustering, independent sets, etc.
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Extensions of Model

® Sliding Window: Infinite stream but only consider graph defined
by recent w edges. Can solve most aforementioned problems.

® Multiple Passes: What’s possible with a small number of stream
passes! E.g., can find |+& approx. matching in O(g) passes.

® Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

STREAM




Dynamic Graphs

® Dynamic Graph Streams: Suppose the stream consists of edges
both being added and removed from the underlying graph.

® (Can we maintain a uniform edge sample in small space?

» Challenge:The sampled edge we have remembered so far
may be deleted at the next step.

Result: Can maintain uniform sample in O(polylog n) space
via a technique called “lo sampling”.

® More powerful sampling techniques:

» In O(n polylog n) space, can construct a data structure that
returns a random edge across any queried cut.

» In O(n polylog n) space, can sample edges where (u,v) is
sampled w/p inversely proportional to size of min u-v cut.




Distributed Graph Data

® Setting: The rows of an adjacency matrix are partitioned
between different machines. Equivalently, consider n players
each of whom has an “address book” listing their friends.

Goal: Each player sends a “short” message to a third party
who then determines if underlying graph is connected.




Dlstrlbuted Graph Data
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(

® Appears that some messages need to be Q)(n) bits: If there’s a
bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

® Thm: O(polylog n) bit messages suffice!
» Protocol is based on dynamic graph sampling results.
» Also allows third-party to estimate all cut sizes!
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Open Problems

?  Many specific open questions:

® Can we construct a spectral sparsifier in O(n)-space
with deletions? Best algorithm so far uses O(n>'3)-space.

® (Can we construct spanners of sliding window graphs!?
® |mprove approx. factors for matchings and triangles...

?  Open Problems Wiki: Large set of open problems in data
streams and property testing can be found at:

http://sublinear.info
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Future Directions

Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

More or Less Space: Most work has focus on O(n)-space
algorithms. Can we reduce space-complexity for specific
families of graphs? What’s possible with slightly more space!?

Explore deeper connections with distributed algorithms,
communication complexity, dynamic graphs data structures...




Summary of the Survey

® Algorithms: Spanners and sparsifiers capture different
properties of the graph. Efficient constructions in streaming
model. Other positive results for matchings, triangles, etc.

Extensions: Many variants of the basic model including sliding
windows, multi-pass, edge deletions, annotations...

Directions: Improve existing results. Future directions include
directed graphs, stream ordering, specific graph families etc.

Thanks!

http://people.cs.umass.edu/~mcgregor/papers/ | 3-graphsurvey.pdf
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Lower Bound for Connectivity
US—0. 00— 80 -0 ©
ve @800 8- e 8

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n

@ Alice runs A on and Ex={uui,;1:xi=0}
@ Send memory to Bob who runs A on

@ Output of A resolves matrix question so s=Q(n).



