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• The index is compared with five well-known indices on six real networks.
• The index is competitive with LP and Katz, and more accurate than CN and PA.
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a b s t r a c t

Link prediction in complex networks has attracted much attention in many fields. In this
paper, a common neighbors plus preferential attachment index is presented to estimate
the likelihood of the existence of a link between two nodes based on local information
of the nearest neighbors. Numerical experiments on six real networks demonstrated the
high effectiveness and efficiency of the new index compared with five well-known and
widely accepted indices: the common neighbors, resource allocation index, preferential
attachment index, local path index and Katz index. The new index provides competitively
accurate prediction with local path index and Katz index while has less computational
complexity and is more accurate than the other two indices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A wide range of systems from nature to society can be described as complex networks with nodes representing cells,
individuals and so on, and links representing the interactions between them [1,2]. The study of complex networks has
received much attention, for example, the evolution of networks [3,4], the relations between topologies and functions [5,6]
and the characteristic of networks [7] have be studied. Due to the large size and the complexity of the interactions, the
current knowledge of these networks such as some biological networks is insufficient [8–10]. It is impossible to check all
the interactions, since the existence of links in those biological networks must be discovered in the field and/or in the
laboratory, which is time-consuming. Accurate prediction algorithms, based on the known interactions, which can find out
the links most likely to exist are required to reduce the experimental costs.

Prediction algorithm could be applied to other systems such as social network where data missing problem occurs [11]
and could solve the problem well. Yin et al. proposed an attribute-augmented social network model [12], which is called
Social-Attribute Network (SAN) and extended with several leading link prediction algorithms. And these algorithms are
compared using large-scale Google+ dataset [13]. Another experimental comparison of existing link prediction techniques
is performed using real social network data for the testing [14]. Besides, the prediction algorithm could be used to predict
the links which would appear in the near future. New links may appear to show new interaction in the network [15], for
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example, for networks like friendship networks in web society [16,17], new links presenting promising friendships can be
recommended to the relevant users, which is valuable for users and could enhance their loyalties to the web sites.

The simplest framework of link prediction algorithms is the similarity-based method and a survey on them is given [18].
Node similarity, which is defined just by the essential attributes of nodes, means that two nodes are similar if they have
many common features [19]. Structural similarity, another group of similarity indices, is based only on the structure of the
network and can be further classified as local similarity indices such as the common neighbors (CN) [20], quasi-local indices
such as Local path index (LP) [21,22], and global similarity indices such as Katz index [23].

In this paper, a so-called common neighbors plus preferential attachment index characterized to the local similarity
indices is proposed. Numerical simulations on six real networks demonstrate that this similarity index is both highly
effective and efficient. Its prediction accuracy is competitive with global similarity index katz index while only using local
information. So, when the network is huge, this index could be used to predict the missing link and link in the future
successfully.

2. Problem description and some existing method

Consider an undirected network G(V , E) without multiple links or self-connections allowed, where V denotes the set
of nodes and E denotes the set of links. The set of non-existent links is U − E, where U is the universal set. Set U contains
all (|V | × (|V | − 1))/2 possible links, where |V | is the number of elements in set V . Assume there are some missing links
(or future links) in the set U − E. The task of link prediction is finding out these links. To solve the problem, each node
pair, i, j ∈ V is assigned a score sij which is representing the measure of the existence probability of links between i and j.
A descending ordered list of all non-observed links is provided according to their scores and the links at the top are most
likely to exist.

To test the algorithms’ accuracy, the observed links set E, is randomly divided into two parts: the training set, ET , is
provided as known links information, while the probe set, EP , treated as unknown links information, is used for testing
but not for prediction. Obviously, ET

∪ EP
= E and ET

∩ EP
= ∅. A standard metric is used to quantify the accuracy of

the prediction algorithms: area under the receiver operating characteristic curve (AUC) [24]. AUC can be defined as the
probability that a randomly chosen missing link (a link in ET ) is given a higher score than a randomly chosen non-existent
link (a link inU−E). In the algorithmic implementation, amissing link and a non-existent link are randomly chosen and their
scores are compared at each time. If there are n′ occurrences of the missing link having a higher score and n′′ occurrences of
the missing link having the same score as the non-existent link among the n independent comparisons, the AUC is defined
as n′

+0.5n′′

n . The AUC value should be about 0.5, if all the scores are generated from an independent and identical distribution.
Thus, the degree to which the value exceeds 0.5 indicates how much better the algorithm is than random choice.

Similarity-based algorithms are widely accepted to solve the problem and a brief introduction of five similarity indices
among them are given: Common Neighbors (CN), Resource Allocation Index (RA), Preferential Attachment index (PA), Local
Path index (LP) and Katz index. Their definitions and relevant motivations are introduced as follows:
(1) Common neighbors, also called structural equivalence in Ref. [20], means that two nodes i and j are more likely to form

a link in the future if they have many common neighbors. For a node i, let Γ (i) denote the set of neighbors of i. The
simplest measure of the neighborhood index is the directed count

sij = |Γ (i) ∩ Γ (j)|. (1)

The similaritymatrix S can bewritten by S = A2, where A is the adjacencymatrix, inwhich Aij = 1 if node i and node j are
directly connected and Aij = 0 otherwise. Some complex measures are proposed in later work, such as Adamic–Adar
Index [25]. Due to the insufficient information, though CN consumes little time and performs relatively well among
many local indices, its accuracy cannot catch up with the measures based on global or quasi-local information.

(2) Resource allocation index (RA) is motivated by the resource allocation dynamics on complex networks Ref. [21].
Considering a pair of nodes i and j, which are not directly connected, the node i can send some resource to node j,
with their common neighbors playing the role of transmitters. Assume each transmitter has a unit of resource, and will
equally distribute it to all its neighbors. The similarity between i and j can be defined as the amount of resource j received
from i, which is

sij =


z∈Γ (i)∩Γ (j)

1
kz

. (2)

(3) Preferential attachment index can be used in both growing andungrowing networks. Thismechanism is used to generate
evolving scale-free networks, where the probability that a new link is connected to the node i is proportional to the
degree k(i) of the node [26].While a new link is generated instead of an old link in a scale-free networks without growth
using similar mechanism [27]. The probability of a new link connecting node i to node j is proportional to k(i) × k(j).
The corresponding similarity index can be defined as

sij = k(i) × k(j), (3)

which can be alsowritten as sij = |Γ (i)|×|Γ (j)| and has already beenwidely used to quantify the functional significance
of links subject to various network-based dynamics [28–30].
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(4) Local path index, a typical quasi-local index, uses the information involving the next nearest neighbors besides common
neighbors [22]. It is defined as

S = A2
+ ϵA3, (4)

where ϵ is a free parameter. When nodes i and j are not directly connected, (A3)i,j equals to the number of different
paths with length 3 connecting them. Obviously, this measure degenerates to CN when ϵ = 0.

(5) Katz index, a typical global similarity index, based on the ensemble of all paths, is exponentially damped by length to
give the short paths more weights and directly sums them up. It is defined as

sij =

∞
l=1

β l
· |paths⟨l⟩ij |, (5)

where paths⟨l⟩ij is the set of all paths with length l connecting nodes i and j, and β is a free parameter representing the
weights of the paths. The similarity matrix S can be written as S = (I − βA)−1

− I , where β must be lower than the
reciprocal of the maximum of the eigenvalues of matrix A to ensure the convergence of Eq. (5).

3. The newmethod

Preferential attachment index requires less information than all the others mentioned in this context, since it does
not require information on the neighborhood of each node except the degree of each node. As a result, it has the least
computational complexity but relatively poor accuracy. Katz index needs all the paths resulting good accuracy but most
computational complexity among the indices introduced in the last section, so it in-practical in large network. Though
commonneighbors has low computational complexity, due to the insufficient information, its accuracy cannot catch upwith
themeasures based on quasi-local information such as LP index or global information such as katz index. The probability that
two node pairs are assigned the same score is high. Taking INT [31] as an example, there are more than 107 two node pairs,
most (99.59%) of which are assigned zero score by CN. For all the node pairs having non-zero scores, 91.11% are assigned
score 1, and 4.48% are assigned score 2 [21]. LP index uses information involving the next nearest neighbors to make the
scores more distinguishable and therefore could improve the accuracy with some computational complexity improved.
Actually, CN involves the information of the number of node pairs’ common neighbors, but ignores the number of their own
neighbors which PA exactly considers. That is to say, |Γ (i)| and |Γ (j)| which are equal to the degrees of nodes i and j could
be considered as the extra information besides common neighbors.

CN performs relatively good among many local indices and widely accepted, while LP using more information improves
the accuracy based on it. On the other hand, preferential attachmentmechanism indicates a new link is connected to thenode
i is proportional to k(i) and a ‘‘rich-gets-richer’’ phenomenon that can be easily detected in real networks [26]. To consider
the advantages of these three indices, a new index considering local information (the common neighbors and their own
neighbors of the node pairs) and preferential attachment is proposed, named Common Neighbors plus Preferential Attachment
(CN+PA). It is defined as

sij = |Γ (i) ∩ Γ (j)| + ϵ
|Γ (i)| × |Γ (j)|

z∈V
|Γ (z)|

|V |

. (6)

Obviously,


z∈V |Γ (z)|
|V |

equals to the average degree ⟨k⟩ of the network which is calculated only once for a network in

implementing the algorithm. So the additional item could also be written as ϵ
k(i)×k(j)

⟨k⟩ , whose computational complexity
is similar to PA index and much lower than ϵA3. This measure degenerates to CN when ϵ = 0. This new index only uses
information involving the nearest neighbors which CN uses, and makes the scores more distinguishable to improve the
accuracy. The information in neighbors of the node pairs is only used to distinguish node pairs with the same number of
common neighbors but different node degrees, therefore ϵ should be a very small number close to zero supposed in Ref. [21].
So in the algorithm realization, the guide is followed and ϵ is set as a small number.

4. Data and analysis

To test the accuracy of the algorithm proposed in this paper, its accuracy measured by AUC is compared with other
five similarity indices: Common Neighbors (CN), Resource Allocation Index (RA), Preferential Attachment (PA), Local
path index (LP), and katz index, using six representative networks drawn from disparate fields for testing. PPI is a
protein–protein interaction network [32] and the giant component contains 2375 proteins and 11693 interactions. NS, a
weighted coauthorship network of scientists working on network theory and experiment, contains 1589 scientists [33],
and the size of the largest connected component contains only 379 nodes and 914 links. The weighted links are treated
as unweighted ones. Grid, a network representing the topology of the western states power grid of the United States [34],
with nodes representing generators, transformers and substations, and links corresponding to the high-voltage transmission
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Fig. 1. (Color online) AUC vs the parameter (ϵ for CN+PA and LP, and β for katz) for three similarity indices: CN+PA (circles), LP (triangles), and Katz index
(squares). Each data point is obtained by 10 independent realizations.

lines between them, contains 4941 nodes and 6594 links. PB is a directed network of the US political blogs [35] and the giant
component contains 1222 nodes and 16714 links. The directed links are treated as undirected ones. INT, collected by the
Rocketfuel Project [31], the router-level topology of the Internet, contains 5022 nodes and 6258 edges. USAir, the network
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Table 1
Accuracies of the six similarity indices, are measured by AUC value. Each number is obtained by 100 realizations with independently random partitions
of testing set and probe set. In the algorithm realization, the training set always contains 90% of the links, and the remaining 10% of links constitute the
probe set. For CN+PA, LP and katz indices, the AUC values are corresponding to the optimal parameter. CN+PA*, LP* and katz* denote the CN+PA, LP and
katz indices with parameters ϵ and β fixed as 0.01 (−0.01 for USAir in LP and CN+PA both, and −0.01 for NS in CN+PA only), respectively. The entries
corresponding to the highest accuracies among these measures are emphasized in black. The very small difference between the optimal case and the case
with ϵ = 0.01 suggests that in the real application, one can directly set ϵ as a very small number instead of finding out its optimum.

AUC PPI NS Grid PB INT USAir

CN 0.9156 0.9766 0.6244 0.924 0.6518 0.9547
RA 0.9171 0.9829 0.6239 0.9269 0.6525 0.9721
PA 0.8655 0.6549 0.5785 0.9096 0.9547 0.9124
CN+PA 0.9432 0.9802 0.6464 0.9345 0.9603 0.9565
CN+PA* 0.9432 0.9774 0.6388 0.9328 0.9595 0.9558
LP 0.9708 0.9871 0.7014 0.9393 0.9455 0.9574
LP* 0.9701 0.985 0.6974 0.939 0.945 0.9551
katz 0.9733 0.9870 0.9642 0.9375 0.9776 0.9579
katz* 0.9733 0.9854 0.9631 0.9363 0.9776 0.9527

of US air transportation system, contains 332 airports and 2126 airlines [36]. Only the giant components of these network
are considered and the training set remains a connected network when the links are moved to the probe set.

Link prediction algorithms are applied on these six real networks, and accuracies of the six similarity indices measured
by AUC values are shown in Table 1, with those entries corresponding to the highest values emphasized by black. Clearly,
the CN+PA index always performs better than the CN and PA index, especially, for INT compared with CN, the AUC is sharply
improved from 0.6518 to 0.9547 and for NS compared with PA, the AUC is sharply improved from 0.6549 to 0.9774. The
CN+PA index gives competitively accurate predictions as the LP index and katz index (except grid). The average topological
distance of grid is 15.87which is much larger than the other five example networks, andwhen a link is removed, it is usually
hard to findwith the local information of the two endpoints. Therefore, the CN, RA, PA, CN+PA and LP indices, considering the
local or quasi-local information, fail to refind the correlation between two directly connected nodes if the link is removed.
More detailed explanation could be found in Ref. [22].

The AUC value vs the parameter (ϵ for CN+PA and LP, and β for katz) for CN+PA, LP and Katz indices is given in Fig. 1.
Clearly, the prediction accuracy for CN+PA is not sensitive to the parameter ϵ when ϵ is small. In addition, the optimal values
of for USAir andNS in CN+PA are negative. In NS, the large-degree nodes sharemany common neighbors and the links among
large-degree nodes are assigned high scores. Therefore, the additional item ϵ

k(i)×k(j)
⟨k⟩ changes little of their relative positions.

Considering two small-degree nodes Sm and Sn, which are scientists in the same group connect to each other and a scientist
Sx in the same group is the common neighbor of them. That is to say, nodes Sm, Sn and Sx form a triangle. Of course, Sx may
connected to Sy who has collaboration with more authors which means the node Sy has larger degree than Sm and Sn. If the
link Sm − Sn is removed to the probe set, the scores of links Sm − Sn, Sm − Sy, Sn − Sy are the same by CN index since they
have the same number of common neighbors. But the degree of Sy is larger than those of Sm and Sn, the existent but removed
link Sm − Sn have lower score than the non-existent links Sm − Sy and Sn − Sy due to the additional item ϵ

k(i)×k(j)
⟨k⟩ . Since the

clustering coefficient of NS network is large, the pattern structure of triangle is dense in NS. When these small-degree-node
links are removed, the removed links have lower scores than the non-existent links due to the additional item. Therefore,
the large clustering coefficient of NS makes the CN+PA index with positive ϵ worse than the simple CN corresponding to
ϵ = 0, which is also the reason why negative ϵ performs even better. And the reason why negative ϵ performs even better
in USAir is similar.

5. Conclusion

In this paper, a common neighbors plus preferential attachment index is presented to estimate the likelihood of the
existence of a link between two nodes. From the numerical results, it is clearly that, this new index provides more accurate
prediction than the CN and PA, and competitively accurate predictionwith LP and katz index. From the algorithm definitions
mentioned in Sections 2 and 3, LIPA needs less information than LP and katz index, so the computational complexity should
be less than that for them. Therefore it is more competitive with large network.
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